InSight’s seismometer detects its first new impact on Mars

Martian impact discovered by InSight
Click for full image.

Using data from InSight’s seismometer that suggested a new impact had occurred at a specific location on September 5, 2022 on Mars, scientists used the high resolution camera on Mars Reconnaissance Orbiter (MRO) to search and find that impact.

The photo to the right, reduced to post here, is that MRO photo.

The initial impact itself created a small marsquake that was detected by InSight’s seismometer. The instrument recorded seismological data that showed the moment the meteoroid entered Mars’ atmosphere, its explosion into pieces in the atmosphere, and finally, the impact that created a series of at least three craters in the surface.

MRO then flew over the approximate site where the impact was “felt” to look for darkened patches of ground using its Context Camera. After finding this location, HiRISE captured the scene in color. The ground is not actually blue; this enhanced-color image highlights certain hues in the scene to make details more visible to the human eye – in this case, dust and soil disturbed by the impact.

This was thus the first new Martian impact detected based on its actual occurrence, rather than simply finding a change between two photos taken at different times. The latter only tells you a time period when the impact occurred. InSight’s detection here marks the impact’s exact moment.

Nor is this the only such discovery. It appears that InSight detected at least two other impacts (here and here), that only subsequently were linked to MRO impacts. In those cases, the new impact had already been found by MRO, and only afterward were scientists able to identify its seismic vibration in InSight data, thus pinpointing the exact date it took place.

Valeri Polykov, holder of the record’s longest stay in space, passes away

Valeri Polykov
Valeri Polykov

Russian astronaut Valeri Polykov, who holds the record for the longest spaceflight yet of any human in history, has passed away at the age of 80.

In 1994 and 1995 Polykov spent 437 days on Russia’s space station Mir, the equivalent of fourteen months and two weeks. His thoughts at launch, as he told me personally when I interviewed him while writing Leaving Earth, were not so confident:

“What if something goes wrong?” [he explained]. “I had sacrificed so much time. The government has spent so much, more than they can afford. And I’ve learned so much for them myself, for them.

“Better I die if something went wrong,” he thought. “Better if I had a gun to shoot myself.”

Nothing went wrong however. Polykov, a doctor, had pushed for this long mission to find out if it would be possible for a person to function after a year-plus of weightlessness upon arrival on Mars. Originally planned to last 18 months, circumstances eventually shortened it to 14 months-plus. When Polykov came home in March 1995, he managed to walk a few steps on his own, shortly after being removed from the capsule. To his mind, he had proved that a person could function on their own on Mars after such a long flight.

Others disagreed. As I wrote in Leaving Earth, though he was almost normal within a week of landing,

Polykov had come back to Earth very weak. For at least those first few hours, he needed help from those around him. Any spacefarer arriving on Mars after a year in space must be prepared to face that same challenge.

Regardless, Polykov, like Brian Binnie, was one of the early giants in space exploration. His contribution must not be forgotten.

Webb takes its first infrared image of Mars

Webb's first infrared image of Mars
Click for full image.

Astronomers have now released the the James Webb Space Telescope’s first infrared image of Mars, taken on September 5, 2022.

The image to the right, cropped and reduced to post here, shows some of the data obtained. Because Mars is so close, it is actually too bright for Webb’s instruments. To get any data, the exposures were very very short, and still the brightest areas — as indicated by large areas of yellow — are overexposed. The cause of the different brightness of Hellas Basin, however, is not simply because the basin — the deepest point on Mars — is cooler.

As light emitted by the planet passes through Mars’ atmosphere, some gets absorbed by carbon dioxide (CO2) molecules. The Hellas Basin – which is the largest well-preserved impact structure on Mars, spanning more than 1,200 miles (2,000 kilometers) – appears darker than the surroundings because of this effect. “This is actually not a thermal effect at Hellas,” explained the principal investigator, Geronimo Villanueva of NASA’s Goddard Space Flight Center, who designed these Webb observations. “The Hellas Basin is a lower altitude, and thus experiences higher air pressure. That higher pressure leads to a suppression of the thermal emission at this particular wavelength range [4.1-4.4 microns] due to an effect called pressure broadening. It will be very interesting to tease apart these competing effects in these data.”

The NASA press release says the scientists are preparing a paper analyzing the spectral data and what it revealed about “dust, icy clouds, what kind of rocks are on the planet’s surface, and the composition of the atmosphere,” I suspect however that Webb’s capabilities for studying Mars are much more limited than implied, and that it will over time take much fewer images of the red planet, compared to Hubble.

Deep inside the youngest flood lava event on Mars

Deep inside the youngest flood lava event on Mars
Click for full image.

Cool image time! Today we return to the Athabasca Valles flood lava event, believed to be the youngest major lava event on Mars that I highlighted in a cool image last week.

Then, I showed two meandering lava flows near the edge of this Great Britain-sized flood lava plain, produced 600 million years ago in only a matter of weeks. Today, we take a look deep within the lava plain. The photo to the right, rotated, cropped, and reduced to post here, was taken on May 6, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label “a lava-crater interaction.”

In plain English, we are looking at a crater that has been inundated by the flood lava, filling it.
» Read more

Starlink being tested in Antarctica

Capitalism in space: The National Science Foundation (NSF) has begun testing a single Starlink terminal at its McMurdo station in Antarctic, with the hope that the service can improve communications at the station significantly.

Everyone at the base shares a 17 Mbps link, according to the United States Antarctic Program, which severely limits what people can do. The station actually blocks people from using high-bandwidth apps like Netflix, cloud backups, and video calls, with the exception of once-weekly Skype or FaceTime sessions at a public kiosk or mission-critical communications.

The addition of Starlink probably doesn’t mean that McMurdo residents will be able to hold a Netflix movie night or anything — the terminals can handle around 50-200 Mbps, which still isn’t a ton to go around, even during the winter when far fewer people are at the base — but it could help make transferring important scientific data off of the icy continent easier.

According to SpaceX’s plans, this new service in Antarctica means that by year’s end Starlink will be available on all seven continents.

New theory: Saturn’s rings came from a lost and destroyed moon

The uncertainty of science: According to a new computer simulation, scientists have proposed that the reason Saturn’s rings are tilted 27 degrees is because they were created by the destruction of a moon 160 million years ago, an event that was also linked to the way the orbits of Saturn and Neptune interact, combined with the on-going slow evolutionary changes in Titan’s orbit around Saturn.

Wisdom and his colleagues believe Saturn acquired its tilt because of a peculiar synchronicity: the precession of Saturn’s spin axis—the way it wobbles like a top with a particular rhythm—is suspiciously in tune with a precession in Neptune’s orbit. If Saturn and Neptune were trapped in this resonance, Saturn’s tilt would be “kind of vulnerable to other forces that could cause it to change,” says Rola Dbouk, an MIT graduate student in planetary science. In 2020, Cassini scientists discovered what the study team thinks is that external stimulus: Titan, Saturn’s largest moon, is migrating away from Saturn by 11 centimeters a year. In a study published today in Science, Dbouk, Wisdom, and colleagues show how Titan’s migration, in combination with the Saturn-Neptune resonance, could have ratcheted up Saturn’s tilt over the course of 1 billion years.

The work also yielded a potential explanation for the origin of Saturn’s rings. Using Cassini’s measurements of Saturn’s gravitational fields to model the planet’s interior structure, the researchers refined calculations for the wobble of Saturn’s spin axis and found it is no longer in sync with Neptune. “Something kicked it out of the resonance,” Dbouk says. They first ruled out the possibility that chaotic changes in the orbits of some of the largest of Saturn’s dozens of moons could be responsible. But when they added another moon to the mix, things got interesting.

In simulations, the researchers included an object about the size of Iapetus, Saturn’s third largest moon, orbiting about 43 Saturn radii out—between the orbits of Titan and Iapetus. They found this moon could have provided the necessary nudge to the resonance if it were suddenly knocked from its orbit because of chaotic interactions with its neighbors about 160 million years ago.

To say that this theory is uncertain is no different that saying the sky is blue. It is so uncertain that it is difficult to take it seriously. It could be right, but as one scientist quoted at the article noted, there is no way to test it.

September 15, 2022 Quick space links

Courtesy of BtB’s stringer Jay, who trolls Twitter so I don’t have to.

Overlapping galaxies

Overlapping galaxies, as seen by Hubble
Click for full image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by astronomers using the Hubble Space Telescope, and captures two galaxies that happen to overlap in their line of sight to Earth.

The two galaxies, which have the uninspiring names SDSS J115331 and LEDA 2073461, lie more than a billion light-years from Earth. Despite appearing to collide in this image, the alignment of the two galaxies is likely just by chance — the two are not actually interacting.

This image was taken as part of the citizen-scientist project dubbed Galaxy Zoo, whereby volunteers review lower resolution images of strange-looking galaxies and propose the best for Hubble higher resolution imaging.

Astronomers propose method for predicting the stars that will go supernovae

The uncertainty of science: Using a computer model based on the most recent data that suggests red supergiant stars like Betelgeuse are the kind of stars that produce certain kinds of supernovae, astronomers now think they have a method for predicting which of those stars are about to go supernovae.

You can read the science paper here. From the link above:

In a few examples, astronomers have looked back at old catalogs and found images of the stars before they exploded, and they all seem to be red supergiants like Betelgeuse. That’s a clear indication that those kinds of stars are supernova candidates, ready to go off at a moment’s notice.

The stars that result in these kinds of supernovas are thought to have dense shrouds of material surrounding them before they explode. These shrouds are orders of magnitude denser than what’s measured around Betelgeuse.

More importantly, the data suggests that once this shroud of material forms, the supernova will follow, in just a few years. As the scientists conclude in their paper:

The final overarching conclusion we can make from this work is that, shortly before core-collapse, [red supergiants] must undergo some prodigious mass-losing event which radically alters the appearance of the star. Therefore, the signature of an imminent explosion should be a dramatic change in the progenitor stars’ optical – near-IR photometry on timescales of less than a month. Such a signature should be detectable in the coming era of wide-field short cadence photometry. [emphasis mine]

Near-IR (infrared) photometry is exactly in the wavelengths in which the James Webb Space Telescope operates. Thus, if it is lucky and sees this kind of star in an image, and a supernova follows shortly thereafter, this theory will have been proven correct.

The shattered cliffs of Mount Sharp

A broken cliff on Mars

Cool image time! The picture above was taken on August 11, 2022 by the left navigation camera on the Mars rover Curiosity. It shows a great example of the strange manner in which the bedrock in the layered cliffs on Mount Sharp appear to break apart.

I am not certain exactly where this feature is, or its exact scale, but based on the date and where Curiosity was located when the photo was taken, it likely is a small section from one of two hills, Deepdale and Bolivar, that Curiosity passed between in mid-August. It is likely somewhere in the panorama included in my August 11th post, but I have not yet been able to locate it.

Nonetheless, the breakage here is typical of these cliff faces. The structural strength of these layered hills is not very high, so at some point one section can break away from another as the hill sags downward to the left. What makes the cracks here more intriguing is that something caused the higher sections surrounding the main block to widen. On Earth we would assume that this widening was caused by rainwater pouring in from the top. On Mars, that explanation doesn’t hold water.

Wind? Seasonal thermal changes? Neither explains the change in the width of the cracks along their length. Maybe the wider cracks indicate an increased sagging of the hill to the left. The layers below this broken block have simply not slid to the left as much.

InSight’s power level goes up!

InSight's power levels as of September 5, 2022

The most recent status update on the Mars lander InSight, released today, shows a slight rise in the amount of power generated by its dust-covered solar panels.

As shown on the graph to the right, on August 27, 2022 the power level was 400 watt-hours generated per Martian day. On September, 5, 2022, the power level was 410 watt-hours per Martian day, the first power increase since late July. At the same time, the dust in the atmosphere continued to clear, going from a tau level of .88 to 0.8. Outside of the winter dust season tau is usually between 0.6 and 0.7.

The slight power increase continues to suggest that the lander’s death might be delayed. At 400 watt-hours per day, it has been able to run its seismometer since the beginning of July. With this slight increase, the chance increases that InSight will finally get that one gust of wind or dust devil that will blow the dust off its solar panels and allow it to recover some power and operate for longer.

Crazy badlands in the equatorial region of Mars

Badlands in the equatorial regions of Mars
Click for full image.

Cool image time! The photo to the right, rotated and cropped to post here, was taken on June 17, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The section highlighted is at full resolution, in order to make clear the absolutely crazy and complex terrain seen in the full image.

This terrain is not glacial, as the location is only about 1 degree south of the Martian equator. There might have been surface or near surface ice here once in the past, but there is none now.

Could we be looking at some form of lava flow? This is possible, because a close look at the context map at the image link suggests this region has been partly covered by some material, obscuring some craters to the east and west. However, there is no visible evidence anywhere in this region of a volcanic vent or caldera. If this covering material was volcanic it is very unclear where it came from.

The overview map below does not really provide any answers, but at least gives the context.
» Read more

CAPSTONE in safe mode

The lunar orbiter CAPSTONE, presently on its way to the Moon, went into safe mode on September 8th at the end of a mid-course correction engine burn.

The CAPSTONE mission team has good knowledge of the state and status of the spacecraft. The mission operations team is in contact with the spacecraft and working towards a solution with support from the Deep Space Network.

Under such conditions engineers almost always recover the spacecraft so that the mission proceeds as normal. No guarantees of course, but it is not unreasonable to expect the same with CAPSTONE.

A “what the heck?!” mesa in the southern polar regions of Mars

A
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on July 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label a “Circular and Banded Landform.”

I put this mesa into a geological category I dub “What the heck?!” We are clearly looking at a mesa, probably no more than 200 feet high, if that. What makes it baffling are the parallel bands that not only cut across the mesa but extend in the same direction for many miles in all directions. Though at first glance these bands appear to be dunes, their rocky eroded look along the mesa’s northwest rim suggests instead the bands are the top edge of many vertically oriented parallel layers, which at this mesa’s flanks are eroding alternatively at different rates.

The overview map below shows us where this mesa is located, relative to the south pole.
» Read more

September 8, 2022 Quick space links

Courtesy of string Jay:

Russia confirms Luna-25 delayed till next year

The landing area for Luna-25
The landing zone for Luna-25 at Boguslawsky Crater

The head of Roscosmos, Yury Borisov, confirmed yesterday that the launch of Russia’s first lunar science probe since the 1970s has been delayed until 2023.

The Doppler speed and distance sensor made by the Vega Concern owned by the Rostech State Corporation, that could guarantee a soft landing, underperformed in terms of measurement precision, a source in the space industry told TASS in July. The launch will likely be postponed until 2023, the source added.

Russian sources had indicated in July that this delay was likely. Yesterday’s announcement merely made it certain.

This project has been under development for almost a quarter of century, which appears to be the average development time for government-run projects, whether in Russia or in the U.S. Just long enough to provide an almost entire career for bureaucrats.

Ingenuity completes 31st flight

Perseverance's location on September 2, 2022
Click for interactive map

Though no details have yet been released, the engineering team for the Mars helicopter Ingenuity has posted the numbers for the helicopter’s 31st flight, which took place yesterday.

Ingenuity flew 318 feet to a height of 33 feet for 56 seconds. The maximum ground speed was 10.6 mph. The white dot on the map to the right indicates the approximate landing spot. The blue dot Perseverance’s location as of September 3rd.

The flight plan had been to fly 319 feet, so Ingenuity landed one foot short of that plan.

That difference does not indicate any problems. However, one of the present goals of the engineering team is to improve their landing accuracy in order to provide data for the future sample return helicopter that is now in development to come and get Perseverance’s sample cores. That future helicopter will need to be able to land very precisely, and they are using Ingenuity to refine the Martian flight software.

An example of the youngest big lava flow on Mars

An example of the youngest big lava flow on Mars
Click for full image.

Overview map

Cool image time! The photo above, rotated, cropped, and reduced to post here, was taken on May 13, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO), and shows two dramatic ancient flows of flood lava. The arrows indicate what I think is the direction of flow for each, though the direction of the flow to the north appears more certain. In a wider context camera image the bulk of the evidence suggests the southern flow is heading west (as indicated by the arrow), but there are scalloped mesas within it that suggest the opposite.

The overview map above marks the location of this picture by the white cross inside the Athabasca Valles flood lava, thought by some scientists [pdf] to be Mars’ youngest major lava event that erupted about 600 million years ago and in just a matter of a few weeks poured out enough lava to cover an area about the size of Great Britain.

The general trend of the Athabasca flow was to the south, splitting into a big western and southeastern flows. This picture captures the southern edge of that southeastern flow, which might help explain why the flow directions in the picture seem so different from the main Athabasca flow. On a large scale, the flow was to the southeast. On a small scale at the edges the flow could go in many directions as the lava looks to find its level.

The Medusa Fossae Formation is the largest volcanic ash deposit on Mars, and is thought to be the source of most of the red planet’s dust. Though the origin of the ash is not yet known, it likely came from the eruptions that formed the planet’s giant volcanoes to the east and west.

Research: Flies on ISS benefited greatly from simulated gravity

Scientists have found that providing fruitflies 1g of artificial gravity on ISS using a centrifuge acted to reduce the medical changes that weightlessness produces.

In this study, scientists sent flies to the space station on a month-long mission in a newly developed piece of hardware called the Multi-use Variable-gravity Platform (MVP), capable of housing flies at different gravity levels. The flies in this hardware had access to fresh food as they lived and reproduced. By using distinct compartments, the MVP allowed for different generations of flies to be separated. On the space station, one group of fruit flies experienced microgravity similar to their human counterparts. Another group was exposed to artificial gravity by simulating Earth’s gravity on the space station using a centrifuge – an instrument that spins to simulate gravity. While on the space station, cameras in the hardware recorded behavior of these “flyonauts”. At different points in time, some of the flies were frozen and returned to Earth to study their gene expression.

…More in-depth analysis on the ground immediately post-flight revealed neurological changes in flies exposed to microgravity. As the flies acclimated to being back on Earth after their journey, the flies that experienced artificial gravity in space aged differently. They faced similar but less severe challenges to the flies that were in microgravity.

You can read the paper here.

To some extent, this study tells us nothing. We already know from a half century of research that zero gravity causes negative physical changes in both fruit flies and humans. What we really need to know is the lowest level of artificial gravity that would be beneficial. It is much easier to engine a spacecraft to produce 0.1g of artificial gravity than 1g. Even 0.5g would ease the engineering problem. The problem is that we do not yet know the right number.

It is a shame the scientists didn’t subject some flies to 0.5g, just to find out if that level of artificial gravity worked to provide benefits.

Computer model: Glaciers move slower in Mars’ gravity

Using a computer model that compared glacier flows on Earth and Mars, scientists have concluded that past glaciers on Mars flowed more slowly than on Earth, and produced different types of erosion features that might explain the red planet’s many riverlike geological features.

The new study modeled how Mars’ low gravity would affect the feedback between how fast an ice sheet slides and how water drains below the ice, finding under-ice channels would be likely to form and persist. Fast water drainage would increase friction at the interface of rock and ice. This means ice sheets on Mars likely moved, and eroded the ground under them, at exceedingly slow rates, even when water accumulated under the ice, the authors said.

From the paper [pdf]:

We show quantitatively that the lower surface gravity on Mars should alter the behavior of wet-based ice masses by modifying the subglacial drainage system, making efficient, channelized drainage beneath Martian ice both more likely to form and more resilient to closure. Using as an example the case of the ancient southern circumpolar ice sheet, we demonstrate that the expected finger-print of wet-based Martian ice sheets is networks of subglacial channels and eskers, consistent with the occur-rence of valley networks and inverted ridges found on the Martian highlands.

This paper confirms the sense I have gotten from the planetary community about glaciers on Mars, that it could be the flow of glaciers that formed its many meandering canyons, not liquid water. The case however is not yet proven, as this is only a computer model.

The evidence continues to pile up: The government’s strongarm policies against COVID were utter failures

The modern basis of medical research in the dark age
Health policy during the Wuhan panic

Since my last COVID update in June, the number of research papers has continued to show, with increasing force, the total and utter failure of every single one of the draconian edicts imposed on the pubic by leftist governments both in Democratic Party controlled states in the U.S. as well as worldwide.

Below are a small sampling of this accumulating research. Read it and weep.

My sorrow however comes from knowing that this knowledge was patently obvious from day one. This new research really isn’t new, it confirms what was well known, and was confirmed quickly as early as March 2020. However, when skeptics like myself, mostly on the right, desperately tried to stem the panic, it was all to no avail. The government’s edicts were always wrong, but no one wanted to listen. The data below merely confirms what all the data, before and during the Wuhan panic, was already telling us.
» Read more

South Korea’s Danuri lunar orbiter successfully makes course correction

On September 2nd engineers for South Korea’s Danuri lunar orbiter successfully completed a major course correction, firing its engines to adjust its path towards the Moon.

The science ministry announced Sept. 4 that the maneuver was so successful that the Korea Aerospace Research Institute (KARI), which controls the spacecraft called Danuri, has decided to skip an additional correction maneuver planned for Sept. 16.

It will reach lunar orbit on December 16th, then make five more orbital adjustments before reaching its science orbit in January. While the spacecraft has instruments from both South Korea and the U.S. for studying the lunar surface, its main goal is to teach South Korea engineers and scientists how to do this.

Inouye Solar Telescope begins science operations

The National Science Foundation yesterday announced the inauguration of science operations of the Daniel K. Inouye Solar Telescope in Hawaii.

The sample first images provided at the link are excellent, but rather than show this telescope’s abilities, they instead illustrate the absurdity of spending millions to build a ground-based telescope. None compare with the spectacular high resolution solar images being produced today from the myriad of solar telescopes in space.

Moreover, the history of this telescope tells us much about the bankrupt nature of all modern government projects:

Over 25 years ago, the NSF invested in creating a world-leading, ground-based solar observatory to confront the most pressing questions in solar physics and space weather events that impact Earth. This vision, executed by the Association of Universities for Research in Astronomy (AURA) through the NSF’s National Solar Observatory (NSO), was realized during the formal inauguration of the Inouye Solar Telescope. [emphasis mine]

It took our modern incompetent federal government a quarter century to build this single telescope. Compare that with the construction of the solar telescopes it is replacing. They were conceived, designed, and built in much less than a decade back in the early 1960s. And cost less too.

The press release at the link also spends a lot of space touting “diversity” and “Native Hawaiian” cultural needs, which really have nothing to do with the study of the Sun. That focus tells us how misguided our government has become, and how it is using its coercive power to drag us all along down that foolish path towards hell.

Webb’s infrared view of the Tarantula Nebula

Two views of the Tarantula Nebula by Webb
Click for original image.

The two images to the right, reduced and annotated to post here, were released today by the science team of the James Webb Space Telescope, and show two different views of the Tarantula Nebula, located 161,000 light years away in the Large Magellanic Cloud.

It is home to the hottest, most massive stars known. Astronomers focused three of Webb’s high-resolution infrared instruments on the Tarantula. Viewed with Webb’s Near-Infrared Camera (NIRCam) [top], the region resembles a burrowing tarantula’s home, lined with its silk. The nebula’s cavity centered in the NIRCam image has been hollowed out by blistering radiation from a cluster of massive young stars, which sparkle pale blue in the image. Only the densest surrounding areas of the nebula resist erosion by these stars’ powerful stellar winds, forming pillars that appear to point back toward the cluster. These pillars contain forming protostars, which will eventually emerge from their dusty cocoons and take their turn shaping the nebula.

…The region takes on a different appearance when viewed in the longer infrared wavelengths detected by Webb’s Mid-infrared Instrument (MIRI) [bottom]. The hot stars fade, and the cooler gas and dust glow. Within the stellar nursery clouds, points of light indicate embedded protostars, still gaining mass. While shorter wavelengths of light are absorbed or scattered by dust grains in the nebula, and therefore never reach Webb to be detected, longer mid-infrared wavelengths penetrate that dust, ultimately revealing a previously unseen cosmic environment.

As with all images from Webb, these are false color, as the telescope views the infrared heat produced by stars and galaxies and interstellar clouds, not the optical light our eyes see. Thus, the scientists assign different colors to the range of wavelengths each instrument on Webb captures.

These photos once again illustrate Webb’s value. It will provide a new layer of data to supplement the basic visual information provided by the Hubble Space Telescope, allowing scientists to better understand the puzzles we see in the optical.

Gullies and glaciers in a crater on Mars

The gullies and glaciers in Avire Crater
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on July 10, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the floor of 4-mile-wide Avire Crater, located at about 41 degrees south latitude inside the much larger 185-mile wide Newton Crater.

This picture was taken as part of a long term monitoring program of the many gullies that flow down the slopes of the crater’s interior rim. In fact, the gullies of this crater have so interested scientists that one even proposed [pdf] this location as a potential future rover landing site.

Avire Crater, a small … gullied crater within Newton Crater, provides many aspects ideal to a future rover mission. It has been previously hypothesized to be the location of a former paleolake with multiple episodes of ponding and deposition. Gullies occur almost continuously on the southwest wall clockwise to the northeastern wall. Dark-toned dunes are present in the northern portion of the crater, in some places obscuring gullies while cut by gullies in others. No changes in the extent or appearance of the dunes have been observed since they were first imaged … in January of 2000. The dunes lack superimposed craters, indicating that the gullies that cut through them are geologically very youthful. Layered lobate features are present at the base of the gullies on the northern wall, seen in many other craters on Mars (not always in association with gullies), which have been suggested to have formed as terminal moraines of ice-rich flows; in Avire, these features have also been suggested to be paleolake deposits. The crater floor is obscured by mid-latitude “fill” material, hypothesized to be partially comprised of ice based on morphologic evidence that the material has been partially removed.

As gullies, dunes, and “fill” material occur in many places on Mars, a single rover mission to a site containing these features would provide valuable information applicable to thousands of other locations across the planet.

The curved ridgeline in the crater floor is thought to be a moraine. The “fill” material to the south is essentially glacial in nature. Both, as well as the gullies, appear to have been shaped either a paleolake that once existed in the crater or by cyclical glacier activity. By going to this one crater, scientists could study all these different geological features at one time.
» Read more

Ingenuity’s flight plan for its next and 31st flight

Perseverance's location on September 2, 2022
Click for interactive map

The Ingenuity engineering team today released the flight plan for the helicopter’s next flight on Mars, its thirty-first since arrival.

The flight is scheduled for no earlier than September 6, mid-day on Mars, and will travel about one minute to the west for a distance of about 319 feet. The white dot on the overview map to the right shows the approximate landing spot, with the green dot marking Ingenuity’s present position. The blue dot marks Perseverance’s present position as it moves to the south and west after leaving the first delta cliff face it studied during the past few months.

The flight’s main goal is to reposition the helicopter to keep it close to the rover to facilitate communications. However, the engineering team has also now adjusted its goals to also practice hitting very precise landing spots. This goal is to develop the engineering and software that can be used on the helicopter that is not yet built that NASA and ESA intend to use to recover Perseverance’s core samples for return to Earth. That helicopter will not only have to very precisely land right next to those samples in a position allowing it to grab them, it must also land very precisely next to the sample return spacecraft to deposit them within it.

Sunspot update: Solar activity continues to exceed sunspot predictions

It is the beginning of September and time to post another update on the Sun’s ongoing solar cycle. Below is NOAA’s monthly graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, with the activity in August now added. I have also added some additional details to the graph to give the numbers a larger context.

Though sunspot activity dropped in August it remained significantly above the predictions of the panel of government solar scientists put together by NOAA. The predicted sunspot number for August, as indicated by the red curve, was supposed to be about 48. The actual number was 75.

» Read more

On Mars you can find glaciers everywhere in the mid-latitudes

Glacial material in Mars' rift zone
Click for full image.

Cool image time! If you ever decide to have some fun exploring the archive of images being sent back to Earth by the high resolution camera on Mars Reconnaissance Orbiter (MRO), always remember that the latitude of the image will almost immediately help to explain the strange features that you see in each picture.

The hi-res photo to the right, rotated, cropped, and reduced to post here, was taken on May 22, 2022 and provides us a great example. The jumbled features in the depression on the image’s right half surely look like the glacial features seen routinely in the 2,000-mile-long strip found in the 30 to 60 degree band in the chaos terrain of the northern lowland plains. In fact, it is likely that cycles of ebb and flow of those glaciers helped shape this chaos of buttes and mesas and cross-cutting canyons.

This picture however is nowhere near any chaos terrain, or that 2,000 long strip. In fact, it is instead in an area that appears mostly formed by tectonic and volcanic activity, as the overview map below shows.
» Read more

Webb obtains first direct infrared images of exoplanet

Webb's first infrared images of an exoplanet
Click for original image.

Using four different infrared instruments on the James Webb Space Telescope, astronomers have obtained the first infrared images of a gas giant with a mass about six to twelve times larger than Jupiter and circling about 100 times farther from its sun.

The montage to the right shows these four images. The white star marks the location of this star, the light of which was blocked out to make the planet’s dim light visible. The bar shapes on either side of the planet in the NIRCam images are artifacts from the instrument’s optics, not objects surrounding the planet.

This is not the first direct image of an exoplanet, as the Hubble Space Telescope has already done so, and done it in the visible spectrum that humans use to see. However, Webb’s infrared images provide a great deal of additional detail about this planet and its immediate surroundings that optical images would not. For example, the MIRI images appear to show us the outer atmosphere of this gas giant.

1 46 47 48 49 50 271