Having regained communications with CAPSTONE, engineers prepare for first mid-course burn

Engineers are now preparing CAPSTONE for its first first mid-course engine burn, slightly late due to a loss of communications during the past two days.

The spacecraft is in good health and functioning properly.

The CAPSTONE team is still actively working to fully establish the root cause of the issue. Ground-based testing suggests the issue was triggered during commissioning activities of the communications system. The team will continue to evaluate the data leading up to the communications issue and monitor CAPSTONE’s status.

If all goes well, that engine burn will occur as early as 11:30 am (Eastern) on July 7th.

How did sand dunes get to the top of a Martian mesa?

Sand dunes at the top of a Martian mountain
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 1, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO) and shows one of the peaks of a 5,000+ foot high mesa inside Juventai Chasma, one of Mars’ deep mostly-enclosed chasms north of Valles Marineris.

I grabbed this picture because its label, “Bedform Change Detection in Juventae Chasma”, suggested something had changed from past photos, probably related to the sand dunes that hug the upper slopes of this peak. Unfortunately, in comparing this image with the earliest high-res image taken by MRO back in February 2018, I could not spot any change, probably because the resolution of the pictures released is not as high as MRO’s raw images.

However, the caption written for that 2018 image tells us where that change has likely occurred:

This image reveals a unique situation where this small dune field occurs along the summit of the large 1-mile-tall [mesa] near the center of Juventae Chasma. The layered [mesa] slopes are far too steep for dunes to climb, and bedform sand is unlikely to come from purely airborne material. Instead, the mound’s summit displays several dark-toned, mantled deposits that are adjacent to the dunes and appear to be eroding into fans of sandy material.

In other words, somewhere in the full resolution image scientists have spotted a change in the bedform sands that make-up these high mountain dunes that hug the peak. Since the data so far has suggested that the source for the sand of these high elevation dunes likely comes from the mesa itself — not from any distant source — any change found will help confirm or disprove that hypothesis.

The white box indicates the area covered by the close-up higher resolution picture below. Also below is an overview map, showing both the location of this mountain in Juventai Chasma as well as Juventai’s location relative to Valles Marineris.
» Read more

Engineers propose flying gliders on Mars

Proposed sailplane flights in Valles Marineris
Proposed sailplane flights in Valles Marineris. Click for full image.

Engineers at the University of Arizona are developing a prototype sailplane that they think could fly for long distances on Mars at higher altitudes than a helicopter and not be reliant on solar batteries.

Using dynamic soaring, the sailplane utilises increases in horizontal wind speed with gaining altitude to continue flying long distances. It’s the same process albatrosses use to fly long distances without flapping their wings and expending crucial energy.

After lifting themselves up into fast, high-altitude air, albatrosses then turn their bodies to descend rapidly into regions of slower, low-altitude air. With the force of gravity providing downward acceleration, the albatross uses this momentum to slingshot itself back to higher altitudes. Continuously repeating this process enables albatross and other seabird species to cover thousands of kilometres of ocean, flap-free.

It’s the inspiration for the sailplane’s own propulsion system, enabling it to cover the canyons and volcanoes dotted across the red planet currently inaccessible to Mars rovers.

The graphic above, figure 1 from the engineers’ research paper, shows one possible sailplane mission, deploying two gliders, one to observe the canyon wall and a second to survey the canyon floor. Both would become a weather station upon landing. While the paper doesn’t state a Mars location for this concept, the graphic strikes a strong resemblance to the section of Valles Marineris where scientists have recently taken “Mars Helicopter” high resolution images using Mars Reconnaissance Orbiter (MRO). This paper and those images might be related, or they could be illustrating the general interest by many scientists for this Mars’ location.

Regardless, the engineers are now planning test flights at 15,000 feet elevation, an elevation that will most closely simulate the atmosphere of Mars, on Earth.

Engineers lose contact with CAPSTONE on its way to Moon

Shortly after the spacecraft was successfully deployed from its Proton upper stage on yesterday, engineers lost contact with the spacecraft as it headed towards the Moon.

“The spacecraft team currently is working to understand the cause and re-establish contact. The team has good trajectory data for the spacecraft based on the first full and second partial ground station pass with the Deep Space Network,” NASA spokesperson Sarah Frazier wrote in an emailed statement today (July 5).

“If needed, the mission has enough fuel to delay the initial post-separation trajectory correction maneuver for several days,” Frazier added. “Additional updates will be provided as soon as possible.”

The spacecraft will not arrive in lunar orbit until November, but along the way it needs to do a number of course corrections. Thus, there is some time pressure to reestablishing communications. That task now falls with the private company Advanced Space, which won a contract to operate the spacecraft for NASA.

UPDATE: More details are provided by the operators of the spacecraft, Advanced Space press, here. Though they canceled a course correction burn today, they apparently have plenty of time to do it, since the probe is already on a course to reach lunar orbit. The burn was simply intended to increase the accuracy of the trajectory.

Scientists: Comet 67P/C-G’s make-up matches the rest of the solar system

A detailed review of the archived data from the Rosetta mission that studied Comet 67P/Churyumov-Gerasimenko closely in 2014-2016 now strongly suggests that the comet’s overall make-up closely matches the rest of the solar system.

“It turned out that, on average, [the comet’s] complex organics budget is identical to the soluble part of meteoritic organic matter”, explains [Nora Hänni of the University of Bern] and adds: “Moreover, apart from the relative amount of hydrogen atoms, the molecular budget of [comet 67P/C-G] also strongly resembles the organic material raining down on Saturn from its innermost ring, as detected by the INMS mass spectrometer onboard NASA’s Cassini spacecraft”.

“We do not only find similarities of the organic reservoirs in the Solar System, but many of [comet 67P/C-G]’s organic molecules are also present in molecular clouds, the birthplaces of new stars”, complements Prof. Dr. Susanne Wampfler, astrophysicist at the Center for Space and Habitability (CSH) at the University of Bern and co-author of the publication. “Our findings are consistent with and support the scenario of a shared presolar origin of the different reservoirs of Solar System organics, confirming that comets indeed carry material from the times long before our Solar System emerged.”

These results are not unexpected, but having those expectations confirmed was one of the main scientific goals of the Rosetta mission. Now, almost a decade later, the results are in.

South Korea ships its first lunar orbiter to U.S. for August launch

The new colonial movement: South Korea today packed and shipped its first lunar orbiter, dubbed Danuri, to the United States for an August 3, 2022 launch on a SpaceX Falcon 9 rocket.

According to the Ministry of Science and ICT, Danuri was sent from the Korea Aerospace Research Institute in Daejeon, 160 kilometers south of Seoul, to Incheon International Airport, west of Seoul, in a specially designed container. The orbiter will be flown to Orlando International Airport and arrive at the Floridian space center Thursday. It will later undergo maintenance, assembly and other pre-launch preparations for about a month before launch.

If all goes right, Danuri will orbit the Moon for a year, both testing its own technology as well as observing the lunar surface.

Sunspot update: For the first time in 2022, sunspot activity eases

With the year half over, the Sun in June did something it had not done since the start of the year: The number of sunspots seen daily on the Sun’s visible hemisphere actually declined from the month before.

I know this because, as I do every month, I have posted below NOAA’s monthly update of its graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere, with some addition details added to provide a larger context.

» Read more

The new damage on Curiosity’s wheels

Comparing a Curiosity wheel from January to June 2022
To see the original images, go here and here.

On June 23, 2022 the Curiosity team provided a major update on the rover’s status on Mars, noting that because of new damage discovered on one of wheels, they were increasing the frequency of their wheel checks from once every 1000 meters of travel to once every 500 meters.

The team discovered that the left middle wheel had damaged one of its grousers, the zig-zagging treads along Curiosity’s wheels. This particular wheel already had four broken grousers, so now five of its 19 grousers are broken.

The previously damaged grousers attracted attention online recently because some of the metal “skin” between them appears to have fallen out of the wheel in the past few months, leaving a gap.

The photo comparison to the right might be showing that specific wheel, or not. The top image was taken January 11, 2022, and when compared then with an image taken six months earlier showed little change. Thus, in January 2022 it seemed the wheels were holding up well as Curiosity traveled into the mountains.

The new image at the bottom, taken June 3, 2022, shows new damage (as indicated by the plus sign) which had occurred sometime in the past six months. During that time the rover had attempted to cross the incredibly rough ground of the Greenheugh Pediment, and had been forced to retreat because the ground was too rough.

This most recent wheel survey in June thus confirms that the decision to retreat was a wise one. It appears that while the rover’s wheels can take the general roughness of the terrain in the foothills of Mount Sharp, the Greenheugh Pediment was beyond the wheels’ capabilities.

One of Perseverance’s two wind sensors damaged by wind-blown material

According to the principal investigator for Perseverance’s two wind sensors, one was recently damaged by a wind-blown tiny pebble.

Pebbles carried aloft by strong Red Planet gusts recently damaged one of the wind sensors, but MEDA can still keep track of wind at its landing area in Jezero Crater, albeit with decreased sensitivity, José Antonio Rodriguez Manfredi, principal investigator of MEDA, told Space.com. “Right now, the sensor is diminished in its capabilities, but it still provides speed and direction magnitudes,” Rodriguez Manfredi, a scientist at the Spanish Astrobiology Center in Madrid, wrote in an e-mail. “The whole team is now re-tuning the retrieval procedure to get more accuracy from the undamaged detector readings.”

…Like all instruments on Perseverance, the wind sensor was designed with redundancy and protection in mind, Rodriguez Manfredi noted. “But of course, there is a limit to everything.” And for an instrument like MEDA, the limit is more challenging, since the sensors must be exposed to environmental conditions in order to record wind parameters. But when stronger-than-anticipated winds lifted larger pebbles than expected, the combination resulted in damage to some of the detector elements.

The term “pebble” implies a larger-sized particle than what probably hit the sensor. I suspect the “pebble” was no more than one or two millimeters in diameter, at the most.

Lucy solar panel almost completely open

Engineers have now been able to get the one solar panel that did not deploy completely after launch on the Lucy asteroid probe almost completely open.

From May 6 to June 16, NASA’s Lucy mission team carried out a multi-stage effort intended to further deploy the spacecraft’s unlatched solar array. The team commanded the spacecraft to operate the array’s deployment motor for limited periods of time, allowing them to closely monitor the response of the spacecraft. As a result of this effort, the mission succeeded in further deploying the array and now estimates that the solar array is between 353 degrees and 357 degrees open (out of 360 total degrees for a fully deployed array). Additionally, the array is under substantially more tension, giving it significantly more stabilization. The mission team is increasingly confident the solar array will successfully meet the mission’s needs in its current tensioned and stabilized state.

The spacecraft’s orbit is now moving into a position where communications will be limited until October, so further attempts to completely open the array will have to wait until then.

Strange pitted and isolated ridges on Mars

Context camera image of isolated ridges
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on February 17, 2012 by the wide-view context camera on Mars Reconnaissance Orbiter (MRO). It shows a section of the northern lowland plains of Mars, latitude 31 degrees north, where several very inexplicable and isolated ridges can be seen.

One ridge meanders mostly in a north-south direction, while a second instead meanders east-west. The shape of both says that neither has anything to do with any past impact crater. In fact, their random snakelike shape doesn’t really fit any obvious explanation. For example, they do not fit the look of the many fossil rivers found on Mars, where the hardened and dry riverbed channel resists erosion and becomes a ridge when the surrounding terrain erodes away.

What geological process caused them? In the decade since this photo was taken the scientists who use MRO have only been able to snap a handful of high resolution images of these ridges. The image below is the most recent, covering the area in the white rectangle above.
» Read more

New research confirms long term bone loss during long missions in weightlessness

According to new research done on ISS, scientists have confirmed what Soviet-era scientists had learned back in the 20th century, that long term bone loss during long missions in weightlessness can take many months to recover once back on Earth.

The bone density lost by astronauts was equivalent to how much they would shed in several decades if they were back on Earth, said study co-author Dr Steven Boyd, of Canada’s University of Calgary and director of the McCaig Institute for Bone and Joint Health.

The researchers found that the shinbone density of nine of the astronauts had not fully recovered after a year on Earth – and they were still lacking about a decade’s worth of bone mass. The astronauts who went on the longest missions, which ranged from four to seven months on the ISS, were the slowest to recover. “The longer you spend in space, the more bone you lose,” Boyd said.

The study also confirmed that some exercises in space helped to mitigate the bone loss, which ranged from 1% to 2% per month. No exercises prevented it however.

For missions to Mars, the bone loss appears less of an issue than the loss of muscle strength. Even with extensive bone loss after six months to a year in space astronauts do not notice this loss when returning to Earth gravity. They will certainly not notice it on Mars, with a gravity field 39% that of Earth’s.

More concerning is the loss of muscle strength during long missions in weightlessness. After six months to a year in weightlessness astronauts struggle on Earth to walk after first landing. This is why they are helped immediately placed to chairs upon return. On Mars no such help will be available.

Glacial features in a Mars crater at 29 degrees south latitude?

Glacial features in Mars crater
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken on January 2, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Simply labeled “slope features,” it was likely taken to monitor the gullies and streaks on the interior walls of this 4-mile-wide crater. Scientists have been using MRO to track the coming and going of frost on this crater’s interior walls since 2016.

Equally intriguing however are what appear to be squashed layers within the crater’s interior. These appear to be some form of glacial feature created by repeated climate cycles, similar to the glacial features routinely seen throughout the 30 to 60 degree mid-latitude strips north and south.

What makes the glacial features in this particular crater particularly intriguing is its location, as shown in the overview map below.
» Read more

The utter failure and total evil of government policies during the Wuhan panic

COVID mortality rates among children 10-14 in the UK
COVID mortality rates among children 10-14 in the United Kingdom,
comparing those who got the COVID shots versus those who did not

While stories about the ineffective and harmful consequences of the panic over the Wuhan flu continue to pour in on an almost daily basis, it is often better to step back and see these many stories in aggregate. By looking at the forest from a distance, a clearer picture frequently reveals itself that remains hidden if you only focus on studying the individual trees.

For example, the graph to the right, first published in January 2022, suggests strongly that giving young children the COVID shots only increased their mortality. This is just one story, however. Is it typical, or an outlier? You need to look at the larger picture to know.

Below I list and categorize the many science papers and news stories I have been collecting since my previous detailed two essays in May about the epidemic and its consequences (see: “The evidence keeps pouring in showing the utter failure of all COVID mandates” and “Are the COVID vaccines killing people over time? The data suggests yes.”). The totality of this data does appear shocking, especially because it makes evident the utter failure of almost every policy set by almost every government health official and elected politician since the Wuhan flu arrived in 2020.

First we must take another look at the new research about the mask mandates, policies that decades of research repeatedly showed would do nothing to protect anyone from COVID, and might even be unhealthy.
» Read more

Mirror comparable to Hubble’s ready for JPL balloon astronomy mission

engineers attach panels to the mirror's support structure.
Engineers attach mirror panels to the mirror’s support structure.

An Italian optics company, Media Lario, has now completed construction of the primary mirror — at 2.5 meters width slightly larger than Hubble’s primary mirror — to be used on a JPL balloon astronomy mission dubbed ASTHROS, targeting a December 2023 launch.

The ASTHROS primary mirror features nine panels, which are significantly easier to fabricate than a one-piece mirror. The bulk of the mirror panels consist of lightweight aluminum, formed into a honeycomb structure that reduces its total mass. The panel surfaces are made of nickel and coated with gold, which improves the mirror’s reflectivity at far-infrared wavelengths.

Once launched, the balloon will circle the south pole for up to four weeks, taking data on the gas distribution in several galaxies.

While that data will be worthwhile, the mission’s real goal is to test these technologies for future space-based astronomy missions. If this mission works, it will reduce significantly the cost and time necessary to make big telescope mirrors, while enhancing the robotic capabilities of such telescopes.

Astronomers: A supermassive black hole rotates far slower than expected

Quasar as seen across multiple wavelengths
Click for full image.

The uncertainty of science: Using Chandra astronomers have measured the rotation of a supermassive black hole in a distant quasar about 3.4 billion light years away and found that it spins at about half the speed of other less massive black holes.

Because a spinning black hole drags space around with it and allows matter to orbit closer to it than is possible for a non-spinning one, the X-ray data can show how fast the black hole is spinning. The spectrum — that is, the amount of energy as a function wavelength — of H1821+643 indicates that the black hole is rotating at a modest rate compared to other, less massive ones that spin close to the speed of light. This is the most accurate spin measurement for such a massive black hole.

The black hole, thought to weigh between 3 to 30 billion times more than the Sun and is the heaviest such object measured in this way, rotates at about half the speed of light. Why that rotation is less than other smaller black holes remains a question not yet answered, though astronomers suspect it is related to its formation history.

The image above is a composite showing this quasar across multiply wavelengths. X-rays are shown in blue, radio in red, and optical in white.

The lava tubes on the western slopes of Alba Mons as potential Martian colonies

Lava tubes on western flank of Alba Mons
Click for full figure.

In a new paper detailing work they first began in 2019, scientists have now carefully mapped the extensive lava tubes that appear to radially descend westward from the caldera of Alba Mons, the volcano on Mars that has the largest surface area but with a relatively low peak.

The mapped population of 331 lava tube systems has a mean length of 36.2 km, with a total length in the western flank geologic map quadrangle of ∼12,000 km. Individual lava tube systems extend up to ∼400 km, and it is likely that some of our mapped lava tubes are connected such that the total number is actually smaller and lengths (average and maximum) longer.

The map above, figure 10 of their paper, shows volcanic ridges as yellow, collapsed lava tube segments as red, and collapsed lava tube on the volcanic ridge as maroon. The wider map below, shows where this region is located, and gives the larger context.
» Read more

Scientists want your help cataloging the clouds on Mars

In order to fully identify all the clouds seen in the sixteen years of data collected by the cloud instrument on Mars Reconnaissance Orbiter (MRO), scientists have now organized a citizen-scientist project to catalogue those clouds.

The project revolves around a 16-year record of data from the agency’s Mars Reconnaissance Orbiter (MRO), which has been studying the Red Planet since 2006. The spacecraft’s Mars Climate Sounder instrument studies the atmosphere in infrared light, which is invisible to the human eye. In measurements taken by the instrument as MRO orbits Mars, clouds appear as arches. The team needs help sifting through that data on Zooniverse, marking the arches so that the scientists can more efficiently study where in the atmosphere they occur.

You can join up by going here.

Science! Psychology researchers discover that kids make friends with those who sit next to them in school

Your tax dollars at work! Psychology researchers at Florida Atlantic University have found to their shock that the friendships school children form are strongly influenced by their seat assignments in class.

Results of the study, published in the journal Frontiers in Psychology, revealed that friendships reflect classroom seat assignments. Students sitting next to or nearby one another were more likely to be friends with one another than students seated elsewhere in the classroom. Moreover, longitudinal analyses showed that classroom seating proximity was associated with the formation of new friendships. After seat assignments changed, students were more likely to become friends with newly near-seated classmates than with those who remained or became seated farther away.

You can read the actual paper here. The research itself was apparently funded by a grant from National Institute of Child Health and Human Development (NICHD), apparently an agency within NIH, that stellar agency that pushed masks, lockdowns, and social distancing during the past two years based on zero data and contrary to research results going back decades.

It seems to me that this result would be obvious to any first grade teacher who is focused on teaching kids. It is also obvious to anyone who ever went to school and made friends there. To spend money on such research is utterly idiotic. Worse, it diverts funds from research that is considerably more important.

But no matter. What is really important is to get funding, no matter how trivial or useless the research. And our corrupt and bankrupt federal bureaucracy is most willing to oblige.

Scientists claim rocket launches are going to damage ozone layer

Junk science: This week NOAA government scientists published a paper claiming that the upcoming increase in rocket launches worldwide is a threat to the ozone layer and will also — my heart be still — promote climate change!

The study found that a tenfold increase in the amount of soot injected into the stratosphere every year would after 50 years lead to an annual temperature increase in that layer of 1 to 4 degrees Fahrenheit (0.5 to 2 degrees Celsius). The stratosphere is the layer of the atmosphere just above the lowest troposphere. The study found that the projected warming would slow down subtropical jet streams, bands of strong wind circling the planet at the lower edge of the stratosphere that influence the African and Indian summer monsoons.

Warmer temperatures in the stratosphere would also degrade the protective ozone layer, which blocks harmful ultraviolet radiation from the sun from reaching the planet’s surface.

The paper’s abstract also said this:

We show that the rocket black carbon increases stratospheric temperatures and changes the global circulation, both of which cause a reduction in the total ozone column, mainly in the northern high latitudes. Comparing the amplitude of the atmospheric response using different emission rates provides insight into stratospheric adjustment and feedback mechanisms. Our results show that the stratosphere is sensitive to relatively modest black carbon injections.

This is garbage science, and I wouldn’t bother posting a link to it if other news sources weren’t promoting it. These predictions — based on a very simple computer model — are nothing more than guesses, and are apparently designed to both attack the growing space industry as well as garner funding for more such junk science, as illustrated by this quote from the NOAA press release:

“We need to learn more about the potential impact of hydrocarbon-burning engines on the stratosphere and on the climate at the surface of the Earth,” said lead author Christopher Maloney, a CIRES research scientist working in NOAA’s Chemical Sciences Laboratory. “With further research, we should be able to better understand the relative impacts of different rocket types on climate and ozone.”

For almost a half century climate scientists — many working for government agencies like NASA and NOAA — have been publishing junk papers like this, predicting climate doom in only a few decades unless we do as they say, while funneling boatloads of cash into their pockets. Almost none of those predictions have turned out to be correct.

This report is equally suspect, especially because it touts the false statistic that “launch rates have tripled in recent decades.” The number of launches has not tripled from its long-term average since Sputnik. The only way you can get manufacture that fake statistic is if you compare last year’s total (134) with the launch numbers from the early 1960s, before the space race had even begun. And while the launch numbers are likely to rise dramatically in the coming years, the numbers will still be infinitesimal compared to other industries. Going from 50-100 launches to 200-500 launches is hardly the end of the world.

It really is far past time for the press and the general public to stop listening to these fake papers.

A thick and syrupy flow on Mars

A thick and syrupy flow on Mars
Click for full image.

Overview map

Cool image time! The photo above, rotated, cropped, and reduced to post here, was taken on March 5, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “viscous flow feature,” which is another way of saying the flow was thick and syrupy.

Nor is such a flow unusual in this area of Mars. It is located in a region of chaos terrain dubbed Protonilus Mensae, which is also the central mensae region in the 2,000-mile-long strip in the northern mid-latitudes of Mars I label glacier country. The overview map above of Protonilus Mensae — covering about 500 miles in width — shows how common such flows are in this place. The black rectangles mark the locations of other cool images I have featured, as follows:

The red rectangle indicates the location of today’s cool image.

The glacial aspect of everything in this region is even more emphasized by the wider view provided by MRO’s context camera below.
» Read more

New research suggests flowing water existed intermittently on Mars from 2.5 to 3.6 billion years ago.

Based on a study of alluvial fans on Mars, river sediment thought to have been placed at the foot of mountains, scientists have concluded that liquid water could have been flowing from as 2.5 to 3.6 billion years ago.

“We’ve known for decades that Mars had rivers and lakes around 3.5 billion years ago, but in the past few years there has been a growing body of evidence that substantial amounts of liquid water continued to erode the Martian surface for hundreds of millions of years,” said Morgan, lead author on “The global distribution and morphologic characteristics of fan-shaped sedimentary landforms on Mars” that appears in Icarus. “Water-formed landforms, such as river deltas and alluvial fans, are the most unambiguous markers of past climate. So we conducted a global survey for these features and explored patterns in their distribution and morphologic properties.”

Morgan and co-authors including PSI Senior Scientist Alan Howard found that alluvial fans are found at lower elevations than the more ancient valley networks, suggesting that stable liquid water became restricted to lower, warmer regions as Mars cooled and dried.

…What is particularly interesting about the Martian fans is that many formed much later than the valley networks, which have long been considered the strongest evidence for surface water on early Mars. Valley networks largely date to around 3.6 billion years ago, but alluvial fans date to 2.5 to 3 billion years ago.

This research merely increases the fundamental geological mystery of Mars. While the surface evidence strongly tells us that liquid water once flowed on the surface, no climate model exists that satisfactorily makes that possible. The atmosphere appears to have always been too cold and thin for liquid water.

Psyche will not launch as scheduled

NASA officials yesterday confirmed that because of software issues its asteroid mission Psyche will not launch as scheduled this year.

Due to the late delivery of the spacecraft’s flight software and testing equipment, NASA does not have sufficient time to complete the testing needed ahead of its remaining launch period this year, which ends on Oct. 11. The mission team needs more time to ensure that the software will function properly in flight.

…As the mission team at NASA’s Jet Propulsion Laboratory in Southern California began testing the system, a compatibility issue was discovered with the software’s testbed simulators. In May, NASA shifted the mission’s targeted launch date from Aug. 1 to no earlier than Sept. 20 to accommodate the work needed. The issue with the testbeds has been identified and corrected; however, there is not enough time to complete a full checkout of the software for a launch this year.

NASA management will conduct a review to understand what caused the problem.

As for when Psyche can next launch and reach the asteroid Psyche, the next launch windows in ’23 and ’24 will not arrive at the asteroid until ’29 or ’30 respectively, a flight time that is about two years longer than what the ’22 launch would have been.

Perseverance’s first climb

Perseverance's first climb
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken by the high resolution camera on the Mars rover Perseverance on June 16, 2022, shortly after it began its first climb up from the generally flat floor of Jezero crater and onto the delta that once in the far past flowed through a gap into that crater.

I have rotated the image about 8.5 degrees to make horizontal the crater floor and the distant rim of the crater (barely visible through the atmosphere’s thick winter dust). This shows that the rover was then climbing what appears to be a relative low angle grade, hardly as challenging as the serious grades that Curiosity has been dealing with now for the past two years in the foothills of Mount Sharp. Nonetheless, Perseverance has begun climbing.

To see where the rover is see the overview map from the start of this week. Unfortunately, I have been unable to determine the direction of this photo. It could be looking west, south, or east, based on features inside Jezero Crater. I therefore cannot tell you the distance to the rim, which depending on the direction, could be from five to twenty-five miles away.

A major update from Curiosity’s science team

Panorama of Mars
Click for full image.

layered flaky rocks
Click for full image.

In a press release today, the Curiosity science team provided a major update on the rover’s recent travels in the mountain foothills of Gale Crater.

First and foremost was the new information about the rover’s wheels, which was buried near the bottom of the release:

The rover’s aluminum wheels are … showing signs of wear. On June 4, the engineering team commanded Curiosity to take new pictures of its wheels – something it had been doing every 3,281 feet (1,000 meters) to check their overall health. The team discovered that the left middle wheel had damaged one of its grousers, the zig-zagging treads along Curiosity’s wheels. This particular wheel already had four broken grousers, so now five of its 19 grousers are broken.

The previously damaged grousers attracted attention online recently because some of the metal “skin” between them appears to have fallen out of the wheel in the past few months, leaving a gap.

The team has decided to increase its wheel imaging to every 1,640 feet (500 meters) – a return to the original cadence. A traction control algorithm had slowed wheel wear enough to justify increasing the distance between imaging.

» Read more

A snakelike Martian ridge

A snakelike Martian ridge
Click for full image.

Cool image time! The photo to the right, rotated, cropped, and reduced to post here, was taken on November 22, 2021 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labeled a sinuous ridge. Make sure you also look at the full image. The ridge goes on to the south, but then fades way as an almost perfect ramp, only to have another even more wiggly but thinner north-south ridge begin only a few feet to the west.

Sinuous ridges like this are found in many places on Mars. Almost always their origin is thought the result of a former river channel that became a ridge when the surrounding softer material eroded away.

That explanation however does not seem to work for this ridge. It has too many other inexplicable features. For example, note how the peak of the ridge smoothly transitions from sharp to flat-topped. It has a soft appearance that is strengthened by the gap near the top.

It is almost as if this ridge is a kind of elongated sand dune! And guess what: The overview map below gives that explanation some believability.
» Read more

A telescope using a liquid mirror about to become operational

Link here. The telescope, located in the Himalayas, is “an international collaboration between institutions in India, Belgium, Poland, Uzbekistan and Canada.”

The mirror works by rotating it so that its thin layer of liquid mercury forms a parabola.

The tradeoff is that the [telescope]is fixed in a single position, so it only observes one strip of the night sky as the Earth rotates below it. But since the telescope will be hyper-focused on just one area, it’s well-suited for spotting transient objects like supernovas and asteroids.

It appears the scientists will use it to study this same strip of sky over five years, hoping to detect changes in that time period.

This telescope is more a technology test than an actual observatory. Eventually the best place to put such a telescope — and much larger — will be on the Moon, and to do that requires some construction and testing beforehand.

InSight team decides to shorten lander’s life to operate seismometer longer

The InSight science team has decided to continue to operate the lander’s seismometer through August rather than turning it off at the end of June, even though that longer use will drain InSight’s batteries sooner and kill the lander shortly thereafter.

The previous plan would have allowed the lander to survive through the end of the year, but would have meant no earthquake data would have been gathered after June.

To enable the seismometer to continue to run for as long as possible, the mission team is turning off InSight’s fault protection system. While this will enable the instrument to operate longer, it leaves the lander unprotected from sudden, unexpected events that ground controllers wouldn’t have time to respond to.

“The goal is to get scientific data all the way to the point where InSight can’t operate at all, rather than conserve energy and operate the lander with no science benefit,” said Chuck Scott, InSight’s project manager at NASA’s Jet Propulsion Laboratory in Southern California.

Apparently they have realized that it is now very unlikely that a dust devil will come by and clear the dust from InSight’s solar panels, so keeping the spacecraft alive longer — but getting no data — does not make sense.

Has work begun on a dedicated helicopter mission to Mars?

Overview map

The easternmost point in the Mars Helicopter traverse
Click for full image.

In my routine searches through the image archive for the high resolution camera on Mars Reconnaissance Orbiter, I recently came upon several images labeled “Candidate Mars Science Helicopter Traverse” that I at first thought referred to Ingenuity’s extended mission in Jezero Crater.

A closer look however revealed these photos have nothing to do with Ingenuity or Jezero Crater. Taken in November ’21, January ’22, and March ’22, the images instead cover parts of the south rim of Valles Marineris, the solar system’s largest canyon, and appear to be research for a future dedicated Mars helicopter mission. The overview map above shows the location of these photos by the black dots. Three locations have each been imaged twice to produce a stereoscopic view that can precisely measure the topography.

The photo to the right, cropped and reduced to post here, shows the easternmost image, taken November 3, 2021. Not only does it show ample flat areas, the picture captures an impressive avalanche flow coming down from that southern interior canyon slope.

All the images were requested by planetary scientist Edwin Kite of the University of Chicago. Though I tried several times to contact Dr. Kite to get more information, he unfortunately did not respond. It could be this work is still too preliminary and thus he does not wish to comment.

Nonetheless, the extent of the three sets of images give us a fair idea of the kind of missions Kite and others might be considering. From east to west the distance between the images is about four hundred miles, and covers a traverse of the southern interior slopes of Valles Marineris along that entire length. The photos look mostly at the base of the canyon’s slope, each showing clearly that a helicopter flying there would have plenty of landing spots.

Obviously this first dedicated Mars helicopter mission might not cover this entire distance. Right now these images could simply be the first tentative research on choosing potential landing areas. Regardless, it appears that at least one scientist has already concluded that Ingenuity has proven such helicopter missions make sense, and is beginning to target one of Mars’s most spectacular locations, Valles Marineris, for that mission.

Water and dry ice at the Martian north polar ice cap

water and dry ice at the Martian north pole
Click for original image. Click here for full image.

In our third Martian cool image of the day, we go to the north pole of Mars, as seen from orbit by the high resolution camera of Mars Reconnaissance Orbiter (MRO). Taken on March 30, 2022 and cropped and reduced to post here, this picture shows some of the distinct and unique geological features found only on the polar caps of Mars. From the caption by Candy Hansen of the Planetary Science Institute in Tucson, Arizona:

Both water and dry ice have a major role in sculpting Mars’ surface at high latitudes. Water ice frozen in the soil splits the ground into polygons. Erosion of the channels forming the boundaries of the polygons by dry ice sublimating in the spring adds plenty of twists and turns to them.

Spring activity is visible as the layer of translucent dry ice coating the surface develops vents that allow gas to escape. The gas carries along fine particles of material from the surface further eroding the channels. The particles drop to the surface in dark fan-shaped deposits. Sometimes the dark particles sink into the dry ice, leaving bright marks where the fans were originally deposited. Often the vent closes, then opens again, so we see two or more fans originating from the same spot but oriented in different directions as the wind changes.

The top layer of translucent dry ice falls as dry ice snow during the winter, than sublimates away with the arrival of spring. Since this photo was taken in autumn, we are looking at features left over from the activity from the spring and summer.

1 65 66 67 68 69 286