Early solar system had gap separating its inner and outer regions
New research looking at the make-up of asteroids now suggests that the early solar system had a gap that separated the formation of planets between its inner and outer regions.
Earlier data had suggested that asteroids come in two fundamentally different groups. This new research, looking the magnetic field strength of these two groups, has confirmed this distinction, and provided additional information about the formation process of each.
Surprisingly, they found that their field strength was stronger than that of the closer-in noncarbonaceous meteorites they previously measured. As young planetary systems are taking shape, scientists expect that the strength of the magnetic field should decay with distance from the sun.
In contrast, Borlina and his colleagues found the far-out chondrules had a stronger magnetic field, of about 100 microteslas, compared to a field of 50 microteslas in the closer chondrules. For reference, the Earth’s magnetic field today is around 50 microteslas.
A planetary system’s magnetic field is a measure of its accretion rate, or the amount of gas and dust it can draw into its center over time. Based on the carbonaceous chondrules’ magnetic field, the solar system’s outer region must have been accreting much more mass than the inner region.
In other words, the accretion of planets in the outer region was faster and producing larger objects, while the inner region was slower and producing smaller objects. The data also suggests that gap existed about 4.5 billion years ago, at about the location of the asteroid belt. All in all, this scenario matches the solar system we see today.
New research looking at the make-up of asteroids now suggests that the early solar system had a gap that separated the formation of planets between its inner and outer regions.
Earlier data had suggested that asteroids come in two fundamentally different groups. This new research, looking the magnetic field strength of these two groups, has confirmed this distinction, and provided additional information about the formation process of each.
Surprisingly, they found that their field strength was stronger than that of the closer-in noncarbonaceous meteorites they previously measured. As young planetary systems are taking shape, scientists expect that the strength of the magnetic field should decay with distance from the sun.
In contrast, Borlina and his colleagues found the far-out chondrules had a stronger magnetic field, of about 100 microteslas, compared to a field of 50 microteslas in the closer chondrules. For reference, the Earth’s magnetic field today is around 50 microteslas.
A planetary system’s magnetic field is a measure of its accretion rate, or the amount of gas and dust it can draw into its center over time. Based on the carbonaceous chondrules’ magnetic field, the solar system’s outer region must have been accreting much more mass than the inner region.
In other words, the accretion of planets in the outer region was faster and producing larger objects, while the inner region was slower and producing smaller objects. The data also suggests that gap existed about 4.5 billion years ago, at about the location of the asteroid belt. All in all, this scenario matches the solar system we see today.