Land of knobs

Land of knobs
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 17, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled merely as a “terrain sample,” it was likely taken not as part of any specific research project, but to fill a gap in the camera’s schedule in order to maintain its proper temperature.

When the camera team does this, they try to pick interesting targets. In this case, they targeted this 400-foot-high pointy-topped hill. The smoothness of its slopes suggest this hill is made up largely of packed dust, possibly a hardened former dune. This hypothesis seems strengthened by the erosion on the eastern slopes, which appears to be areas where that packed sand has worn or blow away.

Think of sandstone in the American southwest. It is made of sand that has hardened into rock, but wind and water and friction can easily break it back into dust particles, resulting often in the spectacular and weird geological shapes that make the southwest so enticing.

But is this sand?
» Read more

Io’s volcanoes get their lava from separate magma chambers, not a global underground ocean of magma

Io's interior as presently theorized
Click for original animation.

Using data collected from Juno’s multiple fly-bys of the Jupiter moon Io, scientists now hypothesize that the moon does not have a global underground ocean of magma, feeding its many volcanoes, but that instead each volcano is fed its lava from a separate magma chamber.

The graphic to the right illustrates the present conclusion. You can read the paper here [pdf]. From the press release:

The Juno team compared Doppler data from their two flybys with observations from the agency’s previous missions to the Jovian system and from ground telescopes. They found tidal deformation consistent with Io not having a shallow global magma ocean.

“Juno’s discovery that tidal forces do not always create global magma oceans does more than prompt us to rethink what we know about Io’s interior,” said lead author Ryan Park, a Juno co-investigator and supervisor of the Solar System Dynamics Group at JPL. “It has implications for our understanding of other moons, such as Enceladus and Europa, and even exoplanets and super-Earths. Our new findings provide an opportunity to rethink what we know about planetary formation and evolution.” [emphasis mine]

The highlighted words indicate the significance of this data. It possibly suggests that the underground oceans of water that have been theorized for these other moons — where life could possibly exist — might be mistaken. Instead, they might have smaller pockets of water, similar to Io’s many magma chambers.

Everything here however is uncertain, including these new conclusions about Io. We just don’t have enough data from any of these moons to make any definitive conclusions.

A review of the last half century of major ice calving events in Antarctica detects no trend

47-year trend of large iceberg calving events in Antarctica
Click for original image.

The uncertainty of science: A review by scientists of major ice calving events in Antarctica that have occurred in the last 47 years has detected absolutely no trend either up or down, despite decades of predictions that human caused global warming would cause huge sections of the icecap to break off and catastrophically change the Earth’s climate.

The graph to the right comes from figure 4 of the paper, and illustrates the lack of trend. Note how the actual observations, the blue dots, show no increase in large calving events. From the abstract:

We use 47 years of iceberg size from satellite observations. Our analysis reveals no upward trend in the surface area of the largest annual iceberg over this time frame. This finding suggests that extreme calving events such as the recent 2017 Larsen C iceberg, A68, are statistically unexceptional and that extreme calving events are not necessarily a consequence of climate change.

The researchers of course genuflect to human-caused global warming in their conclusion by stating that the shrinkage predicted in the Antarctic ice cap (but not yet seen in any significant amount) could instead be occurring due to an increase in small calving events.

The lack of an upward trend in annual maximum iceberg area could be attributed to an overall increase in the number of smaller calving events, which may inhibit the development of extremely large calving events. As such, small calving events pose the greatest threat to the current stability of Antarctic ice shelves.

Since there is no detailed or reliable data of the number of smaller calving events, this hypothesis is entirely made up, and carries no weight. It is simply a fantasy created to maintain the fiction of global warming. A more open-minded look at these results would say that the larger events provide an excellent guide to the overall trend, and that the icecap simply isn’t shrinking as predicted.

Lucy about to do close fly-by of Earth in order to slingshot it towards the orbit of Jupiter

Lucy's future route through the solar system
Lucy’s route to the asteroids. Click for original image.

On December 12, 2024 the asteroid probe Lucy will do a very close fly-by of Earth, dipping to only 220 miles of the ground and thus giving it the velocity to fly through asteroid belt between Mars and Jupiter and on to the Trojan asteroids that orbit with Jupiter.

During the gravity assist, the Lucy spacecraft, from Earth’s perspective, will approach from the direction of the Sun. This means that observers on Earth will not be able to see Lucy approaching, as it will be lost in the Sun’s glare. Lucy’s trajectory will bring the spacecraft very close to the Earth, even lower in altitude than the International Space Station. To ensure the safety of the spacecraft as it passes through this region full of Earth-orbiting satellites and debris, NASA has procedures to anticipate and avoid potential collisions. If needed, the spacecraft will execute a small trajectory correction maneuver 12 hours before closest approach to alter the time of closest approach by 1 or 2 seconds — enough to avoid a potential collision.

Shortly after sunset, keen observers in the Hawaiian Islands may be able to catch a glimpse of Lucy as the spacecraft approaches Earth before it passes into Earth’s shadow at 6:14 p.m. HST. Lucy will speed over the continental U.S. in darkness, travelling over 33,000 miles per hour (14.8 kilometers per second), and emerge from Earth’s shadow 20 minutes later at 11:34 p.m. EST. At that time, Lucy may be visible to observers with a telescope in the western regions of Africa and the eastern regions of South America as sunlight reflects off the spacecraft’s large solar panels (observers in the eastern United States will be looking at the much dimmer “back” side of the solar panels, making Lucy harder to see

No imagery is planned for this flyby in order to protect the spacecraft’s science instruments.

After the fly-by, Lucy’s next target will be the main belt asteroid Donaldjohanson in April 2025. Its arrival in Jupiter orbit will follow in 2027.

Ingenuity’s last flight: an accident investigation

Ingenuity accident investigation conclusions
Click for original image.

Using all the data available, engineers at JPL have done a more detailed accident investigation into Ingenuity’s last flight on Mars on January 18, 2024, and are about to publish their report. Their conclusions however were published today by NASA, with the graphic to the right the main conclusion.

One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.

Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.

The reason Ingenuity’s system couldn’t find enough features to track was because it was flying over a dune field, the ground almost all smooth sand. The only features were the soft changes of topography caused by the dunes, which were not small.

Not surprisingly, these same engineers are working on a larger drone-type helicopter for a future mission, dubbed Mars Chopper, which based on an short animation released by NASA, is the mission targeting Valles Mariner that I first described in June 2022. The investigation into Ingenuity’s failure will inform the design of Chopper.

Reanalysis of Webb data discovers more than a hundred very small main-belt asteroids

Portrait of all 138 new asteroids
Click for original image.

Using data from the Webb Space Telescope in an unexpected way, astronomers have discovered 138 asteroids in the main asteroid belt, most of which are the smallest so far detected.

The picture to the right shows all 138 asteroids. The researchers had originally used Webb to study the atmospheres of the exoplanets that orbit the star TRAPPIST-1. They then thought, why not see if their data also showed the existence of asteroids in our own solar system. By blinking between multiple images they might spot the movement of solar system objects moving across the field of view. From the press release:

The team applied this approach to more than 10 000 [Webb] images of the TRAPPIST-1 field, which were originally obtained to search for signs of atmospheres around the system’s inner planets. By chance TRAPPIST-1 is located right on the ecliptic, the plane of the solar system where all planets and most asteroids lie and orbit around the Sun. After processing the images, the researchers were able to spot eight known asteroids in the main belt. They then looked further and discovered 138 new asteroids, all within tens of meters in diameter — the smallest main belt asteroids detected to date. They suspect a few asteroids are on their way to becoming near-Earth objects, while one is likely a Trojan — an asteroid that trails Jupiter.

The data is insufficient for most of these objects to chart their orbits precisely. Based on this one single study, however, it suggests that pointing Webb along the ecliptic in almost any direction will detect more such objects. Do this enough and astronomers might actually be able to get a rough census of the asteroid belt’s population.

NSF punts on its two big telescope projects

Because it presently does not have sufficient funds to build both the Giant Magellan Telescope (GMT) in Chile and the Thirty Meter Telescope (TMT) in Hawaii, the National Science Foundation (NSF) asked an independent panel to look at both projects and give recommendations on which project it should go with.

That report [pdf] has now been released, and its conclusions essentially take the advice of former Yankee catcher Yogi Berra, “When you come to a fork in the road, take it.” From the report’s executive summary:

Both GMT and TMT have strong leadership, partnership and financial commitments but require $1.6 billion in NSF funding to proceed. Without this support, significant delays or project cancellations may result. The panel emphasized the critical need for congressional support, noting that without additional appropriations, NSF may face challenges balancing these projects with other national priorities, risking U.S. competitiveness in fundamental research. [emphasis mine]

If you dig into the report however you find that TMT is a far more uncertain project. GMT is already being built, while TMT is stalled because it has been unable to get political approval to build in Hawaii on Mauna Kea, even though it initially wanted to start construction almost a decade ago.

Clearly, this report was created simply as a lobbying ploy by the NSF to Congress. NSF didn’t want the report to make a choice. It wanted it to endorse both telescopes so that — rather than bite the bullet and fund one telescope with the money it has already been given by Congress — NSF could use the report to demand more funding so that it can fund both.

Though Congress is now controlled by more fiscally-minded Republicans, don’t expect them to be anymore responsible on this issue than Democrats. These guys really don’t understand basic economics, and think they have a blank check for anything they wish to do. I anticipate Congress will give NSF the extra cash for both telescopes.

The problems for TMT remain, however, and even with that cash it remains very doubtful the telescope will be built. But gee, that won’t be a problem for NSF. Who wouldn’t like getting an extra billion or two to spend as one wishes?

“Thar’s ice in them hills!”

Overview map

Thar's ice in them hills!
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 25, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the camera team labels as a “mound in the southern highlands.”

The mound in question sits in the center of the sunken depression, and at the highest resolution shows its top to be cracked and broken, as if something is attempting to break out by pushing up from below.

Everything about this picture screams near-surface ice. The cracked mound suggests ice sublimating into gas, which applies pressure to the surface and thus the cracks. The depression suggest that much of the near-surface ice at this location has already disappeared, causing the ground to sag. All the craters lack upraised rims. If caused by impacts, the ground here was soft enough that the impactor simply sank into the ground. Imagine dropping a rock you’ve heated into snow. It would simply leave a hole.

But there’s more. The white dot in the overview map above marks the location. In the inset, the lighter area surrounding this depression resembles an ice sheet that is slowly sublimating away. There are also other similar depressions in that lighter area. The lighter area also has fewer craters than the darker regions nearby, suggesting that this ice sheet covers the older impacts.

The location is in the southern cratered highlands in a mid-latitude region where many images indicate the existence of layers of ice deep below ground. This picture is more evidence of the same, but it also indicates the presence of ice very close to the surface as well.

The orbital data continues to tell us that Mars is not a dry desert like the Sahara, but an icy desert like Antarctica. There will be plenty of water for future colonists. All they will have to do is stick a shovel in the ground, dig it up, and process it.

Ten stupid academic studies funded by the federal government

Campus Reform last week posted a list of ten academic studies funded by federal government that any sane person would not only consider stupid, but an utter waste of money.

Number 1 on the list was a grant of almost a half million dollars to researchers at Reed College in Oregon to study the gambling habits of pigeons. The researchers claimed the study would shed light on human gambling behaviors, but if you believe that then you would likely also fork over your life savings to buy the Brooklyn Bridge.

Of the ten studies listed, the National Institute of Health (NIH) and the National Science Foundation (NSF) funded four each, while the National Endowment for the Humanities and the National Cancer Institute funded one each.

National Cancer Institute’s study is surely going to help cure cancer, as it gave $7 million to the con artists faking as researchers at Stanford University to build an AI toilet equipped with cameras to scan the user’s waste and backside.

The studies were done at a range of other major universities, including Cornell, the University of California, the University of Illinois, and the University of Connecticut. Most are publicly funded institutions.

This list demonstrates clearly the bankruptcy of the government agencies involved and justifies any effort to slash their budgets by significant amounts. It does more however. It shows us the bankruptcy of the academic community as well. If scientists at major universities think this drivel is valid research, then we know they are teaching their students garbage as well. The public funding to these colleges should be slashed also.

Strange flat layers on Mars

Strange layers on Mars

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on July 16, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what MRO’s camera team labels as “layers near ridge in Argyre Planitia.”

The layers are strange because there is so little topographic difference between them. Though the ground slopes downward from the south to the north, dropping about 1,300 feet, it does so almost smoothly. The layers show relatively little topographic relief.

And what caused the circular shape? Is it evidence of a buried crater? And if so, why so little relief at its rim?

As always, the overview map provides some answers.
» Read more

Hubble takes a different look at quasar 3C 273

Hubble's different views of 3C 273
Click for original image.

One of the most studied objects in the sky is the quasar 3C 273, located about 2.5 billion light years away and the first quasar ever to be identified, in 1963. What makes it especially interesting is the 300,000-light-year-long jet that shoots out from it.

Astronomers have now used the Hubble Space Telescope to take a different view of 3C 273, using the telescope’s coronograph to block the central bright light so that the surrounding dimmer features can be seen. The two images to the right, reduced and sharpened to post here, show what this new image (bottom) reveals when compared to an earlier Hubble image (top).

The new Hubble views of the environment around the quasar show a lot of “weird things,” according to Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in Nice, France. “We’ve got a few blobs of different sizes, and a mysterious L-shaped filamentary structure. This is all within 16,000 light-years of the black hole.”

Some of the objects could be small satellite galaxies falling into the black hole, and so they could offer the materials that will accrete onto the central supermassive black hole, powering the bright lighthouse.

What makes this observation even more outstanding is that the image was produced by using Hubble’s Space Telescope Imaging Spectrograph (STIS) as the coronograph to block the bright center of 3C 273. This improvisation of STIS has been done many times before, but it remains a great example of clever thinking by the astronomers who use Hubble.

The strange beginning of a 300-mile-long meandering canyon on Mars

Overview map

Today’s cool image will be unlike most cool images, in that we will begin not with the image but with the overview map to the right. The long meandering canyon at the center of this map is Nirgal Vallis, a 300-mile long canyon on Mars that eventually drains to the east into a much larger drainage system that runs south-to-north several thousand miles into the Martian northern lowland plains.

At first glance Nirgal Vallis invokes a river system. It starts in the west as several branches that combine to form a single major canyon meandering eastward until it enters that south-to-north system. To our Earth eyes, this canyon suggests it was carved by water flowing eastward, the many drainage routes combining as they flowed downhill.

Today’s the cool image, its location indicated by the white dot, tells us however that liquid water might not have been what created this canyon.
» Read more

Analysis of Chang’e-6’s lunar samples suggest the giant impact that caused Aitken Basin occurred 2.83 billion years ago

Chang'e-6's landing site
Click for original image of Chang’e-6 on the Moon

In a paper published in mid-November, Chinese scientists have concluded that — based on their analysis of the lunar samples returned by their Chang’e-6 spacecraft — the giant impact that created the 1,600-mile-wide South Pole-Aitken Basin on the Moon occurred about 2.83 billion years ago.

This conclusion is based both on the dating of the samples as well an analysis of the cratering rate on the Moon. It also suggests the landing site as well as Aitken basin were volcanically active for longer than previous predictions. Overall, scientists believe most volcanic activity on the Moon ceased around three billion years ago.

As noted in the paper, the near and far sides of the Moon are very different.

The Moon has a global dichotomy, with its near and far sides having different geomorphology, topography, chemical composition, crustal thickness, and evidence of volcanism. Volcanic eruptions flooded parts of the surface with lava, producing rocks known as mare basalts, which are more common on the nearside (4), where they cover ~30% of the surface compared to 2% of the farside.

The farside’s crust is also thicker, though under Aitken Basin the difference largely disappears.

This first precise dating for the far side is the first step for understanding why the Moon’s hemispheres are so different. Though many theories exist, none can be considered definitive because we so far have only one data point for the far side.

The uncertainty of science: Star refuses to erupt when predicted

Based on records of two past eruptions approximately eighty years apart, astronomers had predicted that the binary star system T Coronae Borealis would erupt sometime in September 2024, brightening from magnitude 10 to as much as magnitude 2, making it one of the sky’s brighter stars for a short while.

That eruption however has so far not taken place.

“We know it has to happen,” astrophysicist Elizabeth Hays, who is watching T CrB every day using NASA’s Fermi gamma-ray space telescope, told Space.com in a recent interview. “We just can’t pin it down to the month.”

The unpredictability stems partly from limited historical records of T CrB’s outbursts. Only two such eruptions have been definitively observed in recent history: on May 12, 1866, when a star’s outburst briefly outshined all the stars in its constellation, reaching magnitude 2.0, and again on February 9, 1946, when it peaked at magnitude 3.0. These events appear to follow the star’s roughly 80-year cycle, suggesting that the next outburst may not occur until 2026. [emphasis mine]

The eruptions are thought to occur because the system’s denser white dwarf star pulls material from the lighter orbiting red giant. Over time that material accumulates on the surface of the white dwarf until it reaches critical mass, triggering a nuclear explosion that we see as the star’s brightening.

Astronomers have assumed this process is predictable, but in truth it really is not. For example, the star has brightened at other times, in 1938 and again in 2015, though not as much. These other brightenings suggest a great deal of uncertainty in the rate in which material accumulates, as well as how much is needed to trigger a nuclear burst.

Because of the possibility however of a burst at any time, astronomers have been poised eagerly now for months, observing the star regularly with the many orbiting telescopes that can observe it not only in optical wavelengths but in gamma, X-rays, and infrared. The latter capabilities didn’t exist in previous eruptions, and are now able to tell them things about the system that was impossible for earlier astronomers.

Assuming the eruption occurs at all. Despite the certainty of the astronomer’s quote highlighted above, there is no certainty here. This star system will do whatever it wants, despite the predictions of mere human beings.

New stars shaped by old stars

New stars shaped by old stars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a study focused on looking at star formation in nearby galaxies. From the caption:

Evidence of star formation is scattered all around NGC 1637, if you know where to look. The galaxy’s spiral arms are dotted with what appear to be pink clouds, many of which are accompanied by bright blue stars. The pinkish colour comes from hydrogen atoms that have been excited by ultraviolet light from young, massive stars. This contrasts with the warm yellow glow of the galaxy’s centre, which is home to a densely packed collection of older, redder stars.

The stars that set their birthplaces aglow are comparatively short-lived, and many of these stars will explode as supernovae just a few million years after they’re born. In 1999, NGC 1637 played host to a supernova, pithily named SN 1999EM, that was lauded as the brightest supernova seen that year. When a massive star expires as a supernova, the explosion outshines its entire home galaxy for a short time. While a supernova marks the end of a star’s life, it can also jump start the formation of new stars by compressing nearby clouds of gas, beginning the stellar lifecycle anew.

This galaxy is one worth keeping an eye on for supernovae, since every one of those blue stars has the potential of erupting.

Strange mesas in the glacier country of Mars

Overview map

Strange mesas in the glacier country of Mars

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on October 2, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The white dot in the overview map above marks the location, inside the chaos terrain of Deuternilus Mensae and part of the 2,000-mile-long mid-latitude Martian strip I label “glacier country,” because practically every image of every part of its landscape has glacial features. For example, the splash apron around the picture’s largest crater as well as the material within it all suggest some form of glacial activity and near-surface ice.

The scientists label what they see here as “Mesas in Small Craters.” These features are located in a low flat plain that geologists think was created when the ground eroded away, leaving behind scattered high plateaus that indicate the previous surface elevation. The geological map [pdf] of this plain describes it as follows:

Smooth, relatively featureless materials with regions of variable albedo north of continuous cratered highlands; exhibits scattered clusters of small circular to irregular knobs.

Based on the many accumulated photos from MRO, the general conclusion is that we are looking at a sheet of ice/dirt and covered by a thin dust layer that acts to protect that ice from sublimating away. When wind blows that dust off and the summer sun hits that near-surface ice, however, it does sublimate in bursts, which thus provides an explanation for the erosion that caused these low featureless plains.

As for these strange terraced mesas inside these distorted hollows, my guess is that the mesas predate the icesheet and are made of material with less ice impregnated within it. As that ice sublimates away it creates the craters within which the mesas remain. The terraces suggest a earlier series of geological sedimentary history.

Unusual light-colored Martian dunes

Unusual light-colored Martian dunes
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 27, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The picture was simply labeled a “terrain sample,” which usually means it was taken not as part of any specific research request, but to fill a gap in the schedule so as to maintain the camera’s proper temperature. When such gap-filler pictures are necessary, the MRO camera team tries to snap something of interest. Sometimes the pictures end up somewhat boring. This time however the picture highlights a dune field that is unusually light in color.

Since most Martian sand is volcanic in origin, it tends to look dark in orbital pictures. That this sand looks bright could be because it is inherently different, or it could be that lighting conditions make what normally looks dark to look bright instead.
» Read more

Trump’s picks to run all the federal health agencies guarantees major change is coming

Trump defiant after being shot
Trump defiant

Fight! Fight! Fight! The announcement late yesterday that president-elect Donald Trump has picked Jay Bhattacharya, the director of Stanford University’s Center for Demography and Economics of Health and Aging, to head the National Institutes of Health (NIH) underlined quite forcefully the certainty that the outsider nature of all of Trump’s picks to head all the health-related agencies in the federal government will led to major changes in how those agencies operate.

Bhattacharya had been blacklisted for his very vocal opposition to the government’s lockdown and mandate policies during the COVID epidemic. He along with Martin Kulldorff, one of the world’s foremost experts on vaccines and who was also blacklisted during the epidemic, co-authored the Great Barrington Declaration that strongly criticized the policies of imposed by these health agencies, calling instead for a return to the standard response to infectious diseases that had been followed successfully for more than a century.

Putting Bhattacharya in charge of NIH is incredibly ironic. When he along with Kulldorff had come out opposed to the lockdown and jab mandates advocated by Francis Collins, then-head of the NIH, Collins in league with Anthony Fauci, then head of National Institute of Allergy and Infectious Diseases (NIAID), put together a back-room campaign to have Bhattacharya, Kulldorff, and many others blacklisted across social media. This campaign also had Kulldorf removed as a member of the CDC’s vaccine safety advisory committee.

Two years later, Collins is now gone, is being sued for his actions, and Bhattacharya has replaced him.

Trump’s defiant choice of Bhattacharya however is only one of many similar decisions, beginning last month with the choice of Robert Kennedy Jr. to run the Department of Health and Human Services.
» Read more

NASA: forcing it to fly VIPER would cause it to cancel funding to 1 to 4 other commercial lunar landers

VIPER's planned route on the Moon
VIPER’s now canceled planned route at the Moon’s south pole

According to a response by NASA to a House committee and obtained by Space News, if Congress forces the agency to fly its canceled VIPER moon rover NASA would have to cancel funding to one to four other commercial lunar landers being built by private companies as part of NASA’s CLPS program.

In one scenario, NASA assumed VIPER would launch on Astrobotic’s Griffin lander as previously planned in September 2025. The agency estimated it would need to spend $104 million to prepare VIPER itself, $20 million of which had already been allocated for activities in fiscal year 2024, along with $20 million in “additional risk mitigation activities” for Griffin. “NASA estimated that these additional funding requirements would lead to cancellation of one CLPS delivery and delay of another delivery by a year,” it stated.

A second scenario anticipated a one-year slip in VIPER’s launch to September 2026. NASA projected an additional $50 million in costs for VIPER and $40 million for Griffin. That would have resulted in two canceled CLPS task orders and a one-year delay to two others.

NASA also revealed it considered “alternative delivery means” for VIPER other than Griffin. NASA did not disclose details about those alternatives, calling them “highly proprietary” but which would have delayed the launch of VIPER beyond 2026 “and would still include significant uncertainty about the reliability of delivery success.” NASA projected total costs of $350 million to $550 million with this scenario, resulting in the cancellation of four CLPS task orders and delaying three to four more by two years.

NASA preferred option is for a private company to take over VIPER. At the moment the agency is reviewing eleven proposals put forth by such companies that has “enough spaceflight experience and technical abilities to conduct the VIPER mission.”

Congress has gotten involved because the science community has lobbied hard to save it. The project itself has been a problem for NASA since its first iteration as Resource Prospector, when NASA would have built both the rover and lander. It has consistently gone over budget and behind schedule, even after NASA gave the lander portion to a private company, Astrobotic. At present the rover is 3X over budget with more overages expected, which is why NASA cancelled it.

Engineers restore Voyager-1 after communications issue

The Voyager missions
The routes the Voyager spacecraft have
taken since launch.

Engineers have now manged to resume normal communications with the Voyager-1 interplanetary probe after it had shut down its main communications channel last month due to low power levels.

Earlier this month, the team reactivated the X-band transmitter and then resumed collecting data the week of Nov. 18 from the four operating science instruments. Now engineers are completing a few remaining tasks to return Voyager 1 to the state it was in before the issue arose, such as resetting the system that synchronizes its three onboard computers.

The X-band transmitter had been shut off by the spacecraft’s fault protection system when engineers activated a heater on the spacecraft. Historically, if the fault protection system sensed that the probe had too little power available, it would automatically turn off systems not essential for keeping the spacecraft flying in order to keep power flowing to the critical systems. But the probes have already turned off all nonessential systems except for the science instruments. So the fault protection system turned off the X-band transmitter and turned on the S-band transmitter, which uses less power.

The S-band transmitter had not been used since 1981, so it took awhile for ground engineers to find the very weak signal. Once found however it was possible to recover operations, though those operations will likely continue for only another year or two. The spacecraft’s power supply is expected to finally run out sometime in ’26 or ’27.

Etched terrain on Mars

Etched terrain on Mars
Click for original image.

Today’s cool image is another example of what I call a “What the heck!” image. The picture to the right, simply cropped to post here, was taken on September 22, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

It shows what the scientists label as “etched terrain,” an incredibly twisted and eroded landscape that to me actually defies description. In trying to research what scientists have learned and theorized about this terrain, it appears they think it is material that flowed over older terrain (thus its lack of many craters) that was subsequently eroded by later processes.

Why it eroded so strangely however is not really understood. It could have been caused by near-surface ice sublimated to the surface and thus causing many breaks, but since this terrain is located right on the equator in the dry tropics, it is a very long time since water was present here.
» Read more

Hubble vs Webb, or why the universe’s secrets can only be uncovered by looking at things in many wavelengths

Hubble view of Sombrero galaxy
Click for original image.

Time for two cool images of the same galaxy! The picture above shows the Sombrero Galaxy as taken by the Hubble Space Telescope in 2003. The picture below is that same galaxy as seen by the Webb Space Telescope in the mid-infrared using false colors. From the press release:

In Webb’s mid-infrared view of the Sombrero galaxy, also known as Messier 104 (M104), the signature, glowing core seen in visible-light images does not shine, and instead a smooth inner disk is revealed. The sharp resolution of Webb’s MIRI (Mid-Infrared Instrument) also brings into focus details of the galaxy’s outer ring, providing insights into how the dust, an essential building block for astronomical objects in the universe, is distributed. The galaxy’s outer ring, which appeared smooth like a blanket in imaging from NASA’s retired Spitzer Space Telescope, shows intricate clumps in the infrared for the first time.

Researchers say the clumpy nature of the dust, where MIRI detects carbon-containing molecules called polycyclic aromatic hydrocarbons, can indicate the presence of young star-forming regions. However, unlike some galaxies studied with Webb … the Sombrero galaxy is not a particular hotbed of star formation. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. Even the supermassive black hole, also known as an active galactic nucleus, at the center of the Sombrero galaxy is rather docile, even at a hefty 9-billion-solar masses. It’s classified as a low luminosity active galactic nucleus, slowly snacking on infalling material from the galaxy, while sending off a bright, relatively small, jet.

In infrared the galaxy’s middle bulge of stars practically vanishes, exposing the weak star-forming regions along galaxy’s disk.

Both images illustrate the challenge the universe presents us in understanding it. Basic facts are often and in fact almost always not evident to the naked eye. We always need to look deeper, in ways that at first do not seem obvious. This is why it is always dangerous to theorize with certainty any explanation too soon, as later data will always change that explanation. You can come up with an hypothesis, but you should always add the caveat that you really don’t know.

By the way, this concept applies not just to science. Having absolute certainty in anything will almost always cause you to look like a fool later. Better to always question yourself, because that will make it easier for you to find a better answer, sooner.

We need only look at the idiotic “mainstream press” during the months leading up to the November election to have an example of someone with certainty who is now exposed as an obvious fool.

The Sombrero Galaxy as seen by Webb
Click for original image.

Martian mountains amidst a deep sea of sand

Overview

A Martian mountain surrounded by a sea of sand
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 9, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The white dot on the overview map above marks the location, inside the deep enclosed and very large 130-mile-wide depression dubbed Juventae Chasma.

The mountain in the picture raises above the sand sea that surrounds it from 1,000 to 2,300 feet, depending on direction, as the downhill grade of the sand sea is to the east. Thus, on the west the mountain rises less, while on the east the height is the greatest.

The inset illustrates the extent of the sand sea. It covers the ground for many miles in all directions. The way the sand surrounds these mountains suggests the prevailing winds blow from the west to the east. In fact, the facts suggest that this sand is volcanic ash that was blown into Juventae from many eruptions that occurred over time to the west, where it got trapped. The wind and gravity deposited the sand into the 20,000 to 25,000-foot-deep chasm, where the wind was insufficient to lift it out again.

One wonders how deep that sand sea might be. The lack of any surface features at all suggests it could be quite deep, burying everything but the highest peaks. In fact, if a geologist could drill a core through that sand I suspect he or she might be able to document the entire eruption history of much of Mars.

Distinct gully draining the side of a Martian crater

Distinct gully in crater on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on August 20, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The science team labels the entire picture simply as “gully,” obviously referring to that distinct and somewhat deep hollow in the middle of the picture.

Most gullies that have been found on Mars tend to look more eroded and rougher than this hollow. Here, it appears almost as if the process that caused this gully occurred relatively recently, resulting in its sharp borders that have not had time to crumble into softer shapes.

The crater interior slope is about 1,500 feet high. Whatever flowed down it however did not do it in an entirely expected manner. As it flowed it curved to the west, so that the impingement into the glacial material that fills the crater floor is to the west of the gully itself. Either that, or that impingement was caused by a different event at a different earlier time.
» Read more

Starship gets contract to deliver Lunar Outpost’s rover to Moon

Capitalism in space: The lunar lander version of SpaceX’s Starship has won a contract from the startup Lunar Outpost to deliver its manned rover to the Moon.

The Colorado company announced Nov. 21 that it signed an agreement for SpaceX to use Starship to transport the company’s Lunar Outpost Eagle rover to the moon. The companies did not disclose a schedule for the launch or other terms of the deal.

This announcement is less a new deal for SpaceX and more an effort to convince NASA to award Lunar Outpost the full contract to build the rover. In April 2024 Lunar Outpost was one of three companies chosen by NASA to receive initial development grants to design their proposed manned lunar rovers. NASA expects to award the full contract, worth potentially up to $4.6 billion, to one of these three companies later this year, after seeing their preliminary designs. It wants to choose two, but at present says budget limitations make that impossible.

ESA and JAXA sign agreement to increase cooperation and accelerate development of Ramses mission to Apophis

The new colonial movement: The European Space Agency (ESA) and Japan’s own space agency JAXA on November 20, 2024 signed a new cooperative agreement to increase their joint work on several missions, the most important of which is the proposed Ramses mission to the potentially dangerous asteroid Apophis during its 2029 close fly-by of Earth.

Two agencies agreed to accelerate to study potential cooperation for ESA’s Rapid Apophis Mission for Space Safety (RAMSES) which aims to explore the asteroid Apophis that will pass close to our planet on 13 April 2029, including but not limited to provision of thermal infrared imager and solar array wings as well as possible launch opportunities.

The two countries are already working together on two different planetary missions, the BepiColombo mission to Mercury and the Hera mission to the asteroid Dymorphos. Both are on their way to their targets. This new agreement solidifies the commitment of both to make sure Ramses is funded, built, and launched in the relatively short time left before that 2029 Earth fly-by. At the moment the ESA has still not officially funded it fully.

Gophers dropped near Mt St. Helens for one day cause a gigantic bloom of plant life 40 years later

In 1982, two years after the Mt. St. Helens volcanic eruption, scientists decided to do an experiment: They dropped six gophers into one meter square enclosures near the eruption with the hope the animals’ digging for one day would bring good soil close enough to the surface to encourage the return of plant life.

The results forty-plus years later:

Six years after their trip, there were over 40,000 plants thriving where the gophers had gotten to work, while the surrounding land remained, for the most part, barren. Studying the area over 40 years later, the team found they had left one hell of a legacy. “Plots with historic gopher activity harbored more diverse bacterial and fungal communities than the surrounding old-growth forests,” the team explained. “We also found more diverse fungal communities in these long-term lupine gopher plots than in forests that were historically clearcut, prior to the 1980 eruption, nearby at Bear Meadow.”

“In the 1980s, we were just testing the short-term reaction,” Allen added. “Who would have predicted you could toss a gopher in for a day and see a residual effect 40 years later?”

You can read the published paper here. It appears the gophers’ action activated the microbiological life in the soil, which in turn made it easier for plant life to return.

The potential benefits of this research is gigantic, especially in areas that have been devastated by any number of natural and man made disasters.

A new geologic map of one of the Moon’s largest impact basins

Orientale Basin on the Moon
Click for original image.

Using data from Lunar Reconnaissance Orbiter (LRO), scientists have now produced a high resolution geological map of Orientale Basin, one of the largest impact basins on the Moon — at about 600 miles across — and located just on the edge of the Moon’s visible near side.

That map is to the right, reduced and sharpened to post here. You can read the paper here [pdf]. From the press release:

Planetary Science Institute Research Scientist Kirby Runyon is a lead author on a paper published in the Planetary Science Journal containing a new high-resolution geologic map of Orientale basin that attempts to identify original basin impact melt. The hope is that future researchers use this map to target sample return missions and pin down impact dates for this and other impact basins.

“We chose to map Oriental basin because it’s simultaneously old and young,” Runyon said. “We think it’s about 3.8 billion years old, which is young enough to still have its impact melt freshly exposed at the surface, yet old enough to have accumulated large impact craters on top of it as well, complicating the picture. We chose to map Orientale to test melt-identification strategies for older, more degraded impact basins whose ages we’d like to know.”

The map’s prime purpose is to pin down locations where material from the actual impact exist and can be returned to Earth for precise dating, thus helping to create a more accurate timeline of the Moon’s formation as well as the entire solar system’s accretion rate.

A spiral galaxy as seen from the side

A spiral galaxy seen from the side
Click for original image.

Cool image time! The picture to the right, reduced to post here, was taken by the Hubble Space Telescope of what is believed to be a spiral galaxy seen edge-on. The galaxy itself is estimated to be 150 million light years away, and this view highlights two major features, the dust lanes that run along the galaxy’s length and its distinct central nucleus, bulging out from the galaxy’s flat plain.

The way this image was produced however is intriguing on its own:

Like most of the full-colour Hubble images released by ESA/Hubble, this image is a composite, made up of several individual snapshots taken by Hubble at different times and capturing different wavelengths of light. … A notable aspect of this image is that the two sets of Hubble data used were collected 23 years apart, in 2000 and 2023! Hubble’s longevity doesn’t just afford us the ability to produce new and better images of old targets; it also provides a long-term archive of data which only becomes more and more useful to astronomers.

All told, four Hubble data sets were used to produce the picture.

Oh no! Starship/Superheavy is loud!

Superheavy after its flight safely captured at Boca Chica
Superheavy after its October flight, safely captured at Boca Chica

Time for another Chicken Little report: A new study of the sound levels produced by SpaceX’s Superheavy booster during its fifth launch and landing at Boca Chica in October 2024 suggests that it produces more noise than predicted.

Overall … Gee et al. note that one of the most important conclusions from their data is the differences between Starship’s launch noise levels and those of SLS and Falcon 9. The team found that Starship produces significantly more noise at liftoff than both SLS and Falcon 9 in both A-weighted and Z-weighted (unweighted) noise metrics.

When compared to Falcon 9, the noise produced by a single Starship launch is equivalent to, at a minimum, 10 Falcon 9 launches. Despite SLS producing more than half of Starship’s overall thrust at liftoff, Starship is substantially louder than SLS. More specifically, one Starship launch is equivalent to that of four to six SLS launches regarding noise production. As has been hypothesized by numerous other studies into the noise produced by rockets, this significant difference in noise levels may be due to the configuration of first-stage engines on the rockets. For example, although the Saturn V produced less overall thrust than SLS, it produced two decibels more noise than SLS, which may be due to the clustered engine configuration on Saturn V’s first stage.

We’re all gonna die! Despite the doom-mongering of this study (which you can read here), the only issue noted by the paper from this noise was car alarms going off. And even here, the spread of the noise was asymmetrical, occurring in only one direction.

The concern about sonic booms has always been the annoyance they cause to residents near airports. In the case of Superheavy, it is very unlikely it will ever fly at a frequency to make its noise intolerable. More important, the nature of a spaceport versus an airport reduces the concern considerably, since a spaceport requires a much larger buffer area, and at both of SpaceX’s Starship launchsites in Florida and Texas almost everyone living close by works for the company or in the space business. They are not going to complain.

And while studying these noise issues is useful, we must not be naive about the real purpose of such studies. Underneath its high-minded science goals is a much more insidious one: finding a weapon for shutting down SpaceX. This concern of mine might be overstated, but remember, almost our entire academic community is rabidly leftist and made up of partisan Democrats. They hate Musk for his politics, and have been aggressively looking for ways to hurt him. This sound study is just another tool in that war.

1 5 6 7 8 9 276