Blue Ghost operating as expected on its way to the Moon

Blue Ghost selfie
Blue Ghost selfie. Click for original.

Firefly has announced that all is well with its Blue Ghost lunar lander, now in an ever expanding Earth orbit on its way to the Moon. Engineers have acquired signal and completed its on-orbit commissioning.

With a target landing date of March 2, 2025, Firefly’s 60-day mission is now underway, including approximately 45 days on-orbit and 14 days of lunar surface operations with 10 instruments as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative.

…Firefly’s Blue Ghost will spend approximately 25 days in Earth orbit, four days in lunar transit, and 16 days in lunar orbit, enabling the team to conduct robust health checks on each subsystem, calibrate the propulsion system in preparation for critical maneuvers, and begin payload science operations.

NASA today released the first picture downloaded from the spacecraft, shown to the right. The view looks across the top deck of the lander, with two NASA science instruments on the horizon.

Once it lands it is designed to operate for about two weeks, during the lunar day. It will attempt to further gather some data during the long two-week long lunar night, but is not expected to survive to the next day.

Bursting ice sheets on Mars

Ice sheets on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 31, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled simply as a “terrain sample” by the camera team, it was likely taken not as part of any specific research project but to fill a gap in the camera’s schedule in order to maintain its proper operating temperature.

In this case the camera team picked a spot in the northern lowland plains at 39 degrees north latitude. What they got was another great piece of evidence of the existence of a lot of near surface ice on Mars, so much so at this location that the craters have become distorted and blobby. The ice in the ground is unstable enough that nothing here can really hold its shape from season to season and from decade to decade.

As I have noted repeatedly in the past six years, MRO data is proving that Mars is not a dry desert like the Sahara, but an icy desert like Antarctica. Except for the planet’s dry tropics below 30 degrees latitude, Mars appears to have a lot of frozen water available relatively near the surface.
» Read more

JPL survives LA fires

Though nothing is certain yet as the fires still rage, it appears that the facilities of JPL, including its Deep Space Network mission control that manages communications with all of America’s interplanetary probes have survived the Los Angeles fires that have destroy large swaths of that city.

The fires required a full evacuation of the facility, leaving that mission control unoccupied for the first time in sixty years. It appears however that the organization used work-arounds to maintain contact and operations with those probes.

How long the facility will remain in this state remains unclear. Some of the fires remain uncontrolled, and until that happens, there can be no return to any sense of normalcy in LA.

SpaceX successfully launches two commercial lunar landers

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

SpaceX tonight successfully launched two different private commercial lunar landers, its Falcon 9 rocket lifting off from the Kennedy Space Center in Florida.

The prime payload was Firefly’s Blue Ghost lunar lander, flying ten science payloads to the Moon for NASA. It will take about six weeks to get to lunar orbit. The second payload was Resilience or Hakuto-R2, built by the Japanese startup Ispace on that company’s second attempt to land on the Moon. It is taking a longer route to the Moon, 4 to 5 months. The map to the right shows the landing locations for both landers. It also shows the first landing zone for Ispace’s first lander, Hakuto-R1, inside Atlas Crater. In that case the software misread the spacecraft’s altitude. It was still three kilometers above the ground when that software thought it was just off the surface and shut down its engines. The spacecraft thus crashed.

For context, the map also shows the landing sites of three Apollo missions.

Both spacecraft were correctly deployed into their planned orbits.

The first stage successfully completed its fifth flight, landing on a drone ship in the Atlantic.

The 2025 launch race:

8 SpaceX
2 China

Right now SpaceX’s launch pace exceeds once every two days. If it can even come close to maintaining that pace, it will easily match its goal of 180 launches in 2025.

Is China’s Yutu-2 lunar rover dead?

According to monthly images taken by Lunar Reconnaissance Orbiter (LRO) of China’s Yutu-2 lunar rover on the far side of the Moon, it has not moved since March 2024, suggesting it is no longer functioning.

“Up to about February 2023 the rover was moving about 7 or 8 metres every drive and typically about 40 m per lunar day. Suddenly the drives dropped to about 3 or 4 m each and only about 8 or 10 m per lunar day,” Stooke said in an email.

“That lasted until about October 2023, and then drives dropped to only 1 or 2 m each. In March 2024 Yutu 2 was resting just southwest of a 10 m diameter crater, and it’s been there ever since, as revealed by LRO images,” Stooke added.

It is possible the rover is not entirely dead, but there is no way to be sure. China is not generally forthcoming when things fail. For example, it has never acknowledged the shut down of its Zhurong Mars rover, which it had hoped would survive its first Martian winter. When that winter ended however no reports from Zhurong were released by China, which suggested it was no longer functioning. China however did not report this. It simply made believe the rover no longer existed.

It could be China is now doing the same with Yutu-2.

Mars geology at its strangest

Strange Martian geology
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken on July 29, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows the northeast quadrant of a weirdly distorted unnamed 3-mile-wide crater in the northern lowland plains of Mars. The crater rim is the ridgeline that enters from picture’s left edge to curve down to exit at bottom right.

The geological feature of interest however is the strange mound to the left of that rim, inside the crater. It certainly appears, based on shadows, that the top of this mound popped off at some time in the past, leaving behind that sharp-edged hollow.

Note however that there is no eruption debris. When a volcano erupts, the debris covers the nearby mountainside. Here we see no evidence of anything that was flung out from this small eruption.
» Read more

Hubble captures a nice example of intergalactic microlensing

Micro-lensing at is most distinct
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken by the Hubble Space Telescope and released this week. I have specifically cropped it to focus on this ringlike feature, as it one of the nicest examples of micro-lensing I have seen. From the caption:

This curious configuration is the result of gravitational lensing, in which the light from a distant object is warped and magnified by the gravity of a massive foreground object, like a galaxy or a cluster of galaxies. Einstein predicted the curving of spacetime by matter in his general theory of relativity, and galaxies seemingly stretched into rings like the one in this image are called Einstein rings.

The lensed galaxy, whose image we see as the ring, lies incredibly far away from Earth: we are seeing it as it was when the Universe was just 2.5 billion years old. The galaxy acting as the gravitational lens itself is likely much closer. A nearly perfect alignment of the two galaxies is necessary to give us this rare kind of glimpse into galactic life in the early days of the Universe.

I am generally a very big skeptic of most astronomical studies that rely on micro-lensing. I don’t deny it happens and has been detected, as in this case. The uncertainties — such as the unknown distance to intervening galaxy that is causing the lensing — always require too many assumptions that make any reliable conclusions difficult.

Nonetheless, this object illustrates the phenomenon perfectly. The light from the distant galaxy is bent around the intervening nearer galaxy so that we that distant galaxy as a ring.

The mysteries buried in the Martian south pole ice cap

The mysterious layers in Mars' south pole ice cap
Click for original image.

Cool image time! The picture to the right, cropped and color-enhanced to post here, was taken on November 3, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The picture is labeled as a “terrain sample,” which means it was likely taken not as part of any specific research project, but to fill a gap in the camera schedule in order to maintain the camera’s proper temperature. In this case the camera team tries to choose interesting features, though sometimes they can’t due to timing.

In this case they were able to target a nice piece of geology, a layered 2,000 foot cliff on the outer edge of the south pole ice cap. The color strip illustrates the possibilities within those layers. I have significantly enhanced the colors to bring out the differences. The orange suggests dust, the aqua-blue water ice, though these colors could also indicate interesting mineralogies.
» Read more

ESA releases three images taken by BepiColombo during its Mercury fly-by yesterday

BepiColombo image from January 8, 2025 fly-by of Mercury
Click for original image. For the annotated version
click here.

The European Space Agency (ESA) today released what it called the three best images taken by the ESA/JAXA joint mission BepiColombo to Mercury in its closest fly-by of the planet yesterday.

The image to the right, cropped, reduced, and sharpened to post here, shows the north polar regions of Mercury. The probe’s solar array is visible to the right.

Flying over the ‘terminator’ – the boundary between day and night – the spacecraft got a unique opportunity to peer directly down into the forever-shadowed craters at planet’s north pole.

The rims of craters Prokofiev, Kandinsky, Tolkien and Gordimer [the four craters in a line at the terminator] cast permanent shadows on their floors. This makes these unlit craters some of the coldest places in the Solar System, despite Mercury being the closest planet to the Sun!

Excitingly, there is existing evidence that these dark craters contain frozen water. Whether there is really water on Mercury is one of the key Mercury mysteries that BepiColombo will investigate once it is in orbit around the planet.

This was BepiColombo’s last slingshot maneuver. It is now set to enter Mercury orbit in late 2026, where it will split into two separate orbiters, one build by ESA and the other by Japan’s space agency JAXA.

Graceful beauty found within the mid-latitude glaciers of Mars

Overview map

Graceful beauty found within the glacial mid-latitudes of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 27, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The red dot on the overview map above marks the location, about 35 miles southwest of the rim of 80-mile-wide Moreau Crater. This location is also deep within the 2,000-mile-long northern mid-latitude strip I label glacier country, as almost every high resolution picture from MRO shows glacial features.

This picture is no different, in that it shows the typical lineated parallel grooves seen on the surface of glaciers both on Earth and Mars, and especially found on glaciers flowing within a narrow canyon, as this glacier is. The parallel grooves are caused by the waxing and waning of the glacier. Each layer represents a past period when ice was being deposited on the surface, with the grooves indicates times when that ice was sublimating away. The graceful curves of the grooves is due to the drift of the glacier itself downhill.

This canyon is about seven miles wide at this point, formed from the confluence of two southerly tributaries to the south. The downward grade is to the north, but the low point is not where you would expect, out into the northern lowland plains. Instead, I have marked the low point in the inset with a white dot, inside the canyon itself. It appears this glacier drains into this low spot, but then this debris-covered ice appears to vanish.

It can’t really vanish, but there is a geological mystery here that involves the alien nature of Mars. For some reason the glacier dies at this point, its material sublimating away. Is there a drainage here that sends the ice to the north by underground passages? Your guess is as good as mine.

The lineated nature of this glacial flow however is no mystery in one respect. It is quite beautiful, as seen from space.

BepiColombo to fly past Mercury again on January 8, 2025

BepiColombo will do its sixth close fly-by of Mercury on January 8, 2025, zipping by its surface by only 183 miles.

It will use this opportunity to photograph Mercury, make unique measurements of the planet’s environment, and fine-tune science instrument operations before the main mission begins. This sixth and final flyby will reduce the spacecraft’s speed and change its direction, readying it for entering orbit around the tiny planet in late 2026.

BepiColombo is more than six years into its eight-year journey to planet Mercury. In total, it is using nine planetary flybys to help steer itself into orbit around the small rocky planet: one at Earth, two at Venus, and six at Mercury. Making the most of this sixth close approach to the small rocky planet, BepiColombo’s cameras and various scientific instruments will investigate Mercury’s surface and surroundings.

Once the spacecraft arrives at Mercury two years hence it will split into two orbiters in complementary orbits, the Mercury Planetary Orbiter built by Europe and the Mercury Magnetospheric Orbiter built by Japan.

Mars gives us another “What the heck?” image

Another
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

The science team labels this “layered rock.” I label it another one of my “What the heck is that?” images on Mars. If I didn’t know this was an orbital image looking down at an alien planet, I’d think it was a paisley pattern on a piece of dark fabric.

The converging “streams” suggest flows, but there really is no clear downhill grade, the landscape generally flat. The lighter patches suggest either higher terrain the flows went around, or places where something bubbled up from below. Or maybe the “flows” are actually cracks that the bubbling material filled as it rose.

I have no idea if any of these theories is right.
» Read more

Parker confirms it gathered science data during its record-breaking solar fly-by on December 24th

Parker flight plan
The flight plan for Parker. Click for original.

Engineers have now confirmed that during its record-breaking close fly-by of the Sun on December 24, 2024 all of its science instruments functioned as planned and were able to collect data as to that previously unexplored near-solar environment.

Breaking its previous record by flying just 3.8 million miles above the surface of the Sun, Parker Solar Probe hurtled through the solar atmosphere at 430,000 miles per hour — faster than any human-made object has ever moved. A beacon tone, received in the mission operations center at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, late in the evening of Thursday, Dec. 26, confirmed the spacecraft had made it through the encounter safely.

The telemetry (or housekeeping data) that APL began receiving on Jan. 1 provided more detail on the spacecraft’s operating status and condition. It showed, for example, that Parker had executed the commands that had been programmed into its flight computers before the flyby, and that its science instruments were operational during the flyby itself.

A full download of this data will occur later this month, after the spacecraft further retreats from the Sun and gets in a better position to transmit it.

This ain’t the end, however. Parker has two more similar close-up fly-ups coming in March and June. Neither will break December’s records, but both will be almost as close to the Sun. After this the probe’s primary mission will be complete. At the moment there is no word if it will get extended should the probe survive intact after those fly-bys.

Sunspot update: Is this sunspot maximum over, or will it become another doubled peaked maximum?

Well, after almost fifteen years it had to happen at last. In preparing to do my monthly sunspot update today, which I had done every month since I started Behind the Black in 2010, I discovered that I had completely forgotten to do the update in December. Sorry about that.

No matter, the changes from month-to-month are not often significant, and fortunately that turned out to be the case in November and December of 2024. Since my last update at the beginning of November 2024, sunspot activity on the Earth-facing hemisphere of the Sun has been relatively stable, based on NOAA’s monthly graph tracking that activity. In November the activity dropped slightly, only to recover a small amount in December.
» Read more

A strange dune in the high southern latitudes of Mars

A strange dune in the high latitudes of Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 24, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have also rotated the image so that north is to the top.

The scientists label this a “dune with seasonally persistent light-toned features.” As the location is in the high southern latitudes, only about 800 miles from the south pole, light-toned features should vary by seasons, as such features usually signal the coming and going of frost, whether it be water ice or dry ice. In this case however the light tones remain from season to season, which suggests the lighter colors are intrinsic to the ground and possibly signal some interesting geology or mineralogy.

The color strip down the center of the dune is an effort to decipher this question. According to the explanation about the colors [pdf] provided by the science team, the orange and light green probably indicates fine dust, while the greenish area along the ridge’s rim as well as its eastern slope suggests frost. Thus, based on the superficial information available to the public, the colors tell us little.
» Read more

A fading supernova 650 million light years away

A fading supernova 650 million light years away
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope in March 2024, and shows the fading blue light of a supernova that was first discovered by another survey telescope six weeks earlier. The galaxy, dubbed LEDA 22057, is estimated to be about 650 million light years away.

The supernova is the bright spot in the galaxy’s southeast quadrant near the edge of the galaxy’s bright body. From today’s caption release:

SN 2024PI is classified as a Type Ia supernova. This type of supernova requires a remarkable object called a white dwarf, the crystallised core of a star with a mass less than about eight times the mass of the Sun. When a star of this size uses up the supply of hydrogen in its core, it balloons into a red giant, becoming cool, puffy and luminous. Over time, pulsations and stellar winds cause the star to shed its outer layers, leaving behind a white dwarf and a colourful planetary nebula. White dwarfs can have surface temperatures higher than 100,000 degrees and are extremely dense, packing roughly the mass of the Sun into a sphere the size of Earth.

While nearly all of the stars in the Milky Way will one day evolve into white dwarfs — this is the fate that awaits the Sun some five billion years in the future — not all of them will explode as Type Ia supernovae. For that to happen, the white dwarf must be a member of a binary star system. When a white dwarf syphons material from a stellar partner, the white dwarf can become too massive to support itself. The resulting burst of runaway nuclear fusion destroys the white dwarf in a supernova explosion that can be seen many galaxies away.

The rate in which this supernova fades will help astronomers untangle the processes that cause these gigantic explosions. Though the caption makes it sound as if we know how this happens, we really don’t. There are a lot of assumptions and guesses involved in the description above, based on the limited knowledge astronomers have gathered over the past few centuries looking at many supernovae many millions of light years away.

Why this place in Valles Marineris is NOT a good place to establish trails and inns

Overview map

North rim and the top of the trail
Click for original image.

In my cool image yesterday I highlighted a location along the north rim of the gigantic Valles Marineris canyon on Mars that appeared a great place to establish a hiking trail. The trail would take hikers down from the rim to the floor of the canyon, a distance of more than 20 miles with an elevation loss of more than 31,000 feet, more than the height of Mount Everest. The image to the right shows the top of that trail, at the rim. The white dot on the overview map above shows its location in Valles Marineris.

Because of the trail’s length I also suggested that future colonists would likely set up inns along the way, so that hikers would have places to stay as they worked their way downhill day-by-day.

There is however one major reason not to build at this particular location, and it involves the most significant geological detail I noticed in the picture to the right. Note the arrows in both this image as well as the inset above. In the picture they mark a sudden drop paralleling the rim. In the inset they also show a series of parallel cracks further north.

The cliff and the cracks suggest that the entire cliff of this part of the north rim has subsided, and is in fact beginning to separate from the plateau, and will soon (in geological terms) collapse into a spectacular avalanche. If you look at the cliff face in the inset you can see two extended outflow piles that apparently came from smaller earlier such collapses.

Could this entire cliff face, the size of Mount Everest, actually separate and crash into the canyon? If you have doubts, then take a look at the image below.
» Read more

Parker probe phones home, signalling it has successfully survived its record-breaking closest approach to the Sun

Parker flight plan
The flight plan for Parker. Click for original.

NASA today reported that it has received a signal from the Parker Solar Probe, indicating all of its systems are in good health following its record-breaking closest approach to the Sun on December 24, 2024.

The mission operations team at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland received the signal just before midnight EST, on the night of Dec. 26. The team was out of contact with the spacecraft during closest approach, which occurred on Dec. 24, with Parker Solar Probe zipping just 3.8 million miles from the solar surface while moving about 430,000 miles per hour.

Not only was this the closest any human-built object has gotten to the Sun, it was the fastest any human-built object has ever traveled.

This close fly-by was Parker’s 22nd of the Sun since launch. In its nominal mission it plans to do two more close approaches as shown in the graphic to the right, both of which will be comparable to the record just set.

Just one of many potential hiking trails down into Valles Marineris

Overview map

Just one of many potential trails into Valles Marineris
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on October 15, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The white dot on the overview map above shows the location, on the northern interior wall of the vast Valles Marineris canyon on Mars.

As my readers know, I tend to look at the spectacular Martian photos coming back from the orbiters and rovers as much from a tourist perspective as that of a scientist. Thus, for this picture, my first thought was to consider the possibility of a trail weaving its way down the nose of that ridgeline and into the canyon. In the Grand Canyon such ridgelines often provide a route down where walking is possible the entire way, with no need for climbing or ropes.

To illustrate my thought, I have indicated the potential trail with the white line. All told this trail covers about 7.2 miles, and drops 12,500 feet. Such a drop is very steep for trails on Earth, with an average grade of 14 degrees and about three times the grade considered reasonable. On Mars, however, with its one-third gravity, I think a grade this steep would be reasonable, though certainly daunting mentally. You would not only be descending on a very steep slope, you would be doing so on the peak of this ridge, with drops of one to two thousand feet on either side.

Amazingly, the inset on the overview map shows that this trail gets you less than halfway to the bottom. All told, the drop from canyon rim to floor at this location is about 31,000 feet over 20 miles, a drop that is greater than climbing down from the top of Mount Everest. If I was to install a trail here I’d also build an inn or two along the way as rest stops for hikers.

What the trail would do is get you to the bottom of this particular ridgeline. From here the trail would have to drop off into the western hollow and from then on descend on top of its alluvial fill. The slope would be as steep, but it would be possible to alleviate that by putting in switchbacks. This would lower the grade, but increase the distance traveled significantly.

Geologically, this image shows to my eye one particular feature that is quite significant, at the rim. I will discuss this tomorrow, in my next cool image.

A Martian river of sand

Overview map

A Martian river of sand

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on July 26, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The red dot in the overview map above marks the location, within the western reaches of the vast Martian canyon dubbed Valles Marineris.

The picture looks at the flow of dust and sand going down the canyon’s southern rim, with particular focus on the central canyon in the picture’s center. The photo was taken as part of a long-term project, begun in 2020 to monitor this river of sand to see if any changes occur over time. Clearly the sand is flowing downhill, almost like a river, with the dunes almost resembling waves. The geological issue is to determine how fast. Based on the resolution available to me, it is impossible to tell it there have been any changes in the past four years, but the full MRO dataset might reveal more information.

To get an idea of scale, the elevation loss from the top to the bottom in this picture is about 6,000 feet. While this seems like a substantial amount, it pales when placed in the context of Valles Marineris. For example, the elevation loss for the canyon’s northern wall is about 25,400 feet, making that wall exceed in height most of the mountains in the Himalayas. And that wall extends for more than 1,500 miles.

Valles Marineris’ southern wall is more complex. It rises about 18,000 feet from the floor of the canyon to the top of the peak on which this slope sits, but then drops 6,700 feet into a parallel side canyon. From there the rise to the southern rim is about 11,000 feet. All told the southern rim sits about 23,000 feet above the canyon floor, once again a drop that would exceed most mountains on Earth.

Using Hubble to monitor a fading supernova

Barred spiral
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a monitoring program of the fading supernova that occurred in this galaxy in 2014, 60 million light years away. I have added a white dot to indicate the approximate location [pdf] of that supernova, as it is now too dim to see clearly in the original image. From the caption:

Researchers have determined that SN 2014cx was a Type IIP supernova. The “Type II” classification means that the exploding star was a supergiant at least eight times as massive as the Sun. The “P” stands for plateau, meaning that after the light from the supernova began to fade, the level reached a plateau, remaining at the same brightness for several weeks or months before fading further. This type of supernova occurs when a massive star can no longer produce enough energy in its core to stave off the crushing pressure of gravity. SN 2014cx’s progenitor star is estimated to have been ten times more massive than the Sun and hundreds of times as wide. Though it has long since dimmed from its initial brilliance, researchers are still keeping tabs on this exploded star, not least through the Hubble observing programme which produced this image.

The blue regions in the galaxy’s periphery suggest younger stars, while the gold color in the interior suggests an older population.

Perseverance takes its first good look west at its future journey

Peservance looks west
Click for original image.

Cool image time! The picture to the right, reduced and enhanced to post here, was taken today by the left navigation camera on the Mars rover Perseverance. Though I am not 100% certain, I think this picture looks almost due west, and is aimed not only at the rover’s near term target, Witch Hazel Hill, but the rover’s long term and very important goal, the Nils Fossae ridge and canyon that appears to be crack formed during the impact that created giant 745-mile-wide Isidis Basin. Jezero Crater sits on the western rim of that impact basin.

The rover team expects to reach Witch Hazel Hill within days. To get there quickly the team has moved the rover more than a thousand feet west and dropped down from the rim about 170 feet in just the past ten days.
» Read more

Land of dust devils

Land of dust devils
Click for original image.

Today’s cool image to the right demonstrates that the atmosphere and climate of Mars is truly different in different places. The picture, rotated, cropped, reduced, and sharpened to post here, was taken on July 22, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled simply as a “terrain sample”, it was likely taken not as part of any specific research project but to fill a gap in the camera’s schedule in order to maintain its proper temperature.

I post it today almost to illustrate the difference between this location and the spot where the lander Insight landed on Mars. Earlier this week the MRO camera team released a short movie created by images of the lander taken over six years, showing how the dust around it had changed over time. I noted further how those images showed a very small number of dust devil tracks, which explained why no dust devil every crossed over the lander’s solar panels to clean them of dust.

For the picture on the right, however, there are a lot of dust devil tracks, so many near the bottom that they almost completely darken the ground.
» Read more

Curiosity looks down and across Gale Crater

Curiosity looks down across Gale Crater
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was part of a panorama created by 24 photos taken by the right navigation camera on the Mars rover Curiosity on December 16, 2024.

The view looks west at the foothills that fill the lower slopes of Mount Sharp. In the far distance, about 20 to 30 miles away, can be seen the western rim of Gale Crater, obscured by the dust in the Martian atmosphere.

Curiosity is presently contouring west along the mountain slope. As it goes it will pass a series of canyons coming down the mountainside. The goal is to eventually reach the canyon the science team has chosen to take for climbing that mountain.

Note the rocky ground. One of the surprises found as Curiosity left the crater floor and started climbing Mount Sharp about four years ago is the rockiness of the terrain. Unlike Earth, Mars’s atmosphere and environment does not have the activity to smooth out this landscape. While science data suggests flowing water was once present here, it wasn’t here long enough to smooth things out. And the atmosphere is just too thin.
» Read more

Astronomers discover 1st binary star system orbiting Milky Way’s central supermassive black hole

The stars orbiting Sag A*
The stars orbiting Sag A*. Click for original image.

Using infrared spectroscopic data gathered from 2005 to 2019 by the Very Large Telescope in Chile, astronomers have identified the first known binary star system to orbit Sagittarius A* (pronounced “A-star”), the Milky Way’s central supermassive black hole.

You can read their science paper here [pdf]. The white dot at the center of the map to the right marks the location of Sagittarius A*, while the red dot marks the present location of the binary star, dubbed D9. The other objects are the stars previously identified orbiting the central black hole, all of which are now believed to be single stars. The binary D9 has an estimated orbit around Sagittarius A* of 432 years and is thought to be less than three million years old. The two stars have approximate masses of 3.86 and 2.8 solar masses, with the smaller orbiting the larger every 372 days.

There is a lot of uncertainty in these numbers, but the data identifying the binary is quite firm. This discovery, as well as the many other stars now known to orbit Sagittarius A*, show that star formation so close to a supermassive black hole is not only possible, it is common, something astronomers a decade ago thought impossible.

New computer simulations suggest Saturn’s rings are not young but formed at the same time as the solar system

A bright spot in Saturn's rings
Click for original source.

The uncertainty of science: Scientists doing computer simulations now posit that Saturn’s rings are not young, between 100 to 400 million years old as has been believed for the last few decades, but formed instead when Saturn formed, 4.6 billion years ago.

You can read their paper here [pdf].

The young age had been based on data from the Cassini orbiter, which showed the ring particles to be very bright and clean. If old those particles would have been darker as they accumulated dust over time on their surface. The new computer simulations suggest a process whereby those particles get “cleaned,” thus making it possible for the rings to be very old, possibly as old as Saturn itself.

Must I point out the uncertainties? The paper itself admits in its abstract “uncertainties in our models that assume no porosity, strength, or ring particle granularity.” Seems these assumptions make the conclusions very uncertain indeed.

Then again, the previous young estimates of the age of the rings had many similar assumptions and uncertainties. Essentially, we don’t have enough information to make any definitive determinations.

A galactic eye in heaven

A galactic eye in space
Click for original image.

Cool image time! The picture to the right, reduced and sharpened to post here, was taken by the Hubble Space Telescope as part of a project to study the star formation processes over time in this galaxy, located about 76 million light years away.

A prominent bar of stars stretches across the centre of this galaxy, and spiral arms emerge from each end of the bar. Because NGC 2566 appears tilted from our perspective, its disc takes on an almond shape, giving the galaxy the appearance of a cosmic eye.

As NGC 2566 gazes at us, astronomers gaze right back, using Hubble to survey the galaxy’s star clusters and star-forming regions. The Hubble data are especially valuable for studying stars that are just a few million years old; these stars are bright at the ultraviolet and visible wavelengths to which Hubble is sensitive. Using these data, researchers will measure the ages of NGC 2566’s stars, helping to piece together the timeline of the galaxy’s star formation and the exchange of gas between star-forming clouds and stars themselves.

To get the full picture, astronomers have also obtained infrared data from the Webb Space Telescope and millimeter/submillimeter radio wavelength data from the ALMA telescope.

The Insight lander on Mars as seen from orbit over six years

Insight as seen by MRO over six years
Click for movie.

Using photos taken by Mars Reconnaissance Orbiter (MRO) from 2018 to 2024, researchers have compiled a short movie showing how the dust around the Mars lander Insight changed over time.

This video shows images taken by HiRISE between Dec. 11, 2018, just a couple weeks after InSight landed on Mars, and Oct. 23, 2024. In the images, InSight often appears as a bright, blue dot due to its reflection of sunlight. A dark halo was scorched into the ground by the spacecraft’s retrorocket thrusters; this halo fades away over time. Dark stripes that can be seen on the surface are tracks left by passing dust devils. [emphasis mine]

You can see the movie here. The image to the right was the first picture taken by MRO only three weeks after landing.

Insight eventually shut down because this dust accumulated on its solar panels, and the lander never was blessed with having a dust devil cross over it to blow that dust away. This video illustrates why. Out of the seven images making up the short movie, only three show dust devil tracks, and in each case only a few tracks are seen. No other tracks are detected.

In other words, over six years this region simply did not get a lot of dust devils. The odds of one crossing over InSight was thus quite low. Ironically, the image to the right shows that a dust devil crossed very close to the lander about the time it landed in 2018, probably just beforehand since the dark scorch created by the lander’s thrusters cover the track. No dust devil ever got that close again.

Juno spots changes on Io’s surface in just a two-month span

Before and after images by Juno of volcanic ring on Io
Click for original image.

New photos taken just two months apart by Juno of a region dubbed Nusk Patera on the Jupiter moon Io showed the appearance of a distinct ring that had hardly been there before.

The pictures, taken during two recent fly-bys of the moon, are above, and show the change. From the caption:

A red ring formed around Nusku Patera in the two months between the spacecraft’s 58th flyby on Feb. 3, 2024, and its 60th on April 9, 2024. The ring obscures some nearby features like Creidne Patera. This ring, 683 miles (1,100 kilometers) wide is likely from a Pele-type plume rich in sulfur. Similar transient red rings were observed by NASA’s Galileo mission around Grian Patera and Surt and were associated with intense but short-lived thermal “outburst” eruptions.

In other words, sulfur from eruption from the central vent/caldera was flung into the sky enough that when it eventually settled back down it landed in a ring about 340 miles away from the center.

Other data from Juno, also released this week here and here, detected fresh lava flows at another volcanic region of Io dubbed, Zal Patera.

1 5 6 7 8 9 278