High ridge down the center of a big Martian crack

High ridge down the middle of a Martian canyon
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on January 27, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled simply as a “terrain sample,” it was likely taken not as part of any specific research project but to fill a gap in the schedule in order to maintain the camera’s proper temperature.

Whenever the camera team needs to do this, they try to find an interesting object to photograph, and often succeed. In this case they focused on the geology to the right. I suspect that at first glance my readers will have trouble deciphering what they are looking at. Let me elucidate: This this a 2.5-mile-wide canyon, about 1,000 feet deep, that is bisected by a ridge about 500 feet high.

On the sunlight walls of this canyon you can see boulders and debris, with material gathered on the canyon floor. The smoothness of the floor suggests also that a lot of Martian dust, likely volcanic ash, has become trapped there over the eons.
» Read more

Firefly releases movie of lunar sunset

Sunset on the Moon
Click for original image.

Using imagery taken by Firefly’s Blue Ghost lander, the company today released a short movie showing sunset on the Moon, from several different angles.

I have embedded that movie below. The picture to the right, cropped, reduced, and sharpened to post here, is one of the photos from that movie. It shows the Sun on the horizon, with the Earth above it and Venus the small bright dot in between.

One alien aspect of the Moon that that while the Sun (and Venus) slowly crossed the sky during Firefly’s two week mission, going from just after sunrise in the east to sunset in the west, the Earth remained stationary in this location above the horizon. This phenomenon occurs because the length of the Moon’s day and its orbit around the Earth are the same length, so that one hemisphere always faces the Earth. Blue Ghost landed in Mare Crisium on the eastern edge of that hemisphere. At that location the Earth always hangs at this spot in the sky.
» Read more

More surprises from the Wolf-Rayet star numbered 104 and known for its pinwheel structure

Keck infrared data of WR104

Among astronomers who study such things, Wolf-Rayet 104 is one of the most well known OB massive stars in their catalog, with the infrared picture to the right illustrating why. The star is actually a binary of massive stars, orbiting each other every eight months. Both produce strong winds, and the collision of those winds results in a glorious pinwheel structure that glows in the infrared.

Such stars are also believed to be major candidates to go supernova and in doing so produce a powerful gamma ray burst (GRB) that would shoot out from the star’s poles. As the orientation of this pinwheel suggests we are looking down into the pole of the system, this star system was actually considered a potentially minor threat to Earth. Located about 8,400 light years away, this is far enough away to mitigate the power of the GRB, but not eliminate entirely its ability to damage the Earth’s atmosphere.

New research now suggests however that despite the orientation of the pinwheel, face-on, the plane of the binary star system is actually tilted 30 to 40 degrees to our line of sight. The press release asks the new questions these results raise:

While a relief for those worried about a nearby GRB pointed right at us, this represents a real curveball. How can the dust spiral and the orbit be tilted so much to each other? Are there more physics that needs to be considered when modelling the formation of the dust plume?

You can read the paper here. It is a quite refreshing read, not just because of its relatively plain language lacking jargon, but because of its willingness to list at great length the uncertainties of the data.

Curiosity’s newest view from the heights

Mars in its glorious barrenness
Click for original image.

Overview map
Click for interactive map.

Cool image time! The panorama above, cropped slightly to post here, was taken today by the right navigation camera on the Mars rover Curiosity. It looks north from the rover’s present location on the flank of Mount Sharp, with the rim of Gale Crater in the far distance about 20 to 30 miles away. Curiosity now sits about 3,000 feet above the floor of the crater.

The blue dot on the overview map to the right marks the rover’s position at this time. The yellow lines indicate the approximate view of the panorama. As with all of the images from both Curiosity and Perseverance, the main impression is a barren and lifeless landscape of incredible stark beauty.

It is now very evident that the Curiosity science team has made the decision to abandon their original route to the west. Instead, they have decided to strike south up into this canyon because it provides them the easiest and fastest route to the boxwork geology to the southwest. It also has them climbing into new geological layers rather than descending into layers that the rover has already seen.

The next time someone tells you Mars lacks water, show them this picture

Lots of near surface ice on Mars
Click for original image.

In the past decade orbital images from Mars have shown unequivocally that the Red Planet is not the dry desert imagined by sci-fi writers for many decades prior to the space age. Nor is it the dry desert that planetary scientists had first concluded based on the first few decades of planetary missions there.

No, what the orbiters Mars Reconnaissance Orbiter (MRO) and Mars Express have clearly shown is that, except for the planet’s equatorial regions below 30 degrees latitude, the Martian surface is almost entirely covered by water ice, though it is almost always buried by a thin layer of protective dust and debris. Getting to that ice will be somewhat trivial, however, as it is almost always near the surface.

The picture to the right, rotated, cropped, reduced, and sharpened to post here, is a perfect example. It was taken on January 31, 2025 by the high resolution camera on MRO. At the top it shows part of a small glacial-filled crater surrounded by blobby ground clearly impregnated with ice. That crater in turn sits on the rim of a much larger very-eroded ancient 53-mile-wide crater whose floor, also filled with glacial debris, can be seen at the bottom of this picture. The wavy ridge line at the base of the rim appears to be a moraine formed by the ebb and flow of the glacial ice that fills this larger crater.

None of these glacial features is particularly unique on Mars. I have been documenting their presence now at Behind the Black for more than six years. Yet, I find still that most news organizations — including many in the space community — remain utterly unaware of these revelations. Any new NASA or university press release that mentions the near-surface ice that covers about two-thirds of the planet’s surface results in news stories claiming “Water has been found on Mars!”, as if this is a shocking new fact from a place where little water is found.

It is very shameful that so many reporters and news organizations are so far out of touch with the actual state of the research on Mars.
» Read more

Webb captures infrared images of five exoplanets orbiting two different stars

Four gas giants in infrared
Click for original image.

Using the Webb Space Telescope, astronomers have taken two different direct false-color infrared images of exoplanets orbiting the stars HR 8799 (130 light years away) and 51 Eridani (97 light years away.

The image of the four gas giants orbiting HR 8799 is to the right, cropped, reduced, and slightly enhanced to post here. From the caption:

The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light.

The Webb false color infrared picture taken of one of the exoplanets orbiting the star 51 Eridani is also at the link, showing “a cool, young exoplanet that orbits 890 million miles from its star, similar to Saturn’s orbit in our solar system.”

The data from the HR 8799 image suggests these gas giants have a lot of carbon dioxide gas, and thus might be growing by pulling in material from the star’s accretion disk.

Scientists issue new map of land below Antarctica’s icecap

Map of Antarctica's estimated land mass
Click for original image.

Using decades of data and more advanced computer software, scientists have now compiled the most detailed map of the land and shorelines hidden below Antarctica’s massive icecap.

The map to the right, reduced to post here, shows that bedrock terrain generally in hues of green to brown, with lower elevations comparable to the ocean in hues of blue. The actual shoreline is however impossible to determine, since without the pressure of the icecap on top, the continent would rise, while the ocean itself would also rise with the addition of all that water.

You can read the science paper here.. From the press release:

Known as Bedmap3, it incorporates more than six decades of survey data acquired by planes, satellites, ships and even dog-drawn sleds. … The map gives us a clear view of the white continent as if its 27 million cubic km of ice have been removed, revealing the hidden locations of the tallest mountains and the deepest canyons.

One notable revision to the map is the place understood to have the thickest overlying ice. Earlier surveys put this in the Astrolabe Basin, in Adélie Land. However, data reinterpretation reveals it is in an unnamed canyon at 76.052°S, 118.378°E in Wilkes Land. The ice here is 4,757 m thick, or more than 15 times the height of the Shard, the UK’s tallest skyscraper.

The paper describes at length the large uncertainties that exist in this data. As thorough as they tried to be, we must remember that Antarctica is very large with a very hostile environment. Much of it has never been visited by any humans. Getting an accurate picture of the thickness of the ice at all points is presently impossible. This is basically an excellent summary of our best guess.

Europe’s Hera asteroid probe sends back data from Mars fly-by

Deimos and Mars as seen by Hera
Click to see full movie.

The European Space Agency (ESA) Hera probe, on its way to study the Didymos/Dimorphos asteroid binary, has successfully sent back images and data obtained during its close-by of Mars yesterday.

The infrared image to the right, a screen capture from a short movie assembled from Hera’s first images, shows the Martian moon Deimos with Mars in the background. The mission scientists have compiled all of these first images taken by Hera to create a short movie, that I have embedded below. From the movie’s caption:

The car-sized Hera spacecraft was about 1000 km away from Deimos as these images were acquired. Deimos orbits approximately 23 500 km from the surface of Mars and is tidally locked, so that this side of the moon is rarely seen. Hera’s TIRI – supplied to the mission by the Japan Aerospace Exploration Agency, JAXA – sees in mid-infrared spectral bands to chart surface temperature. Because Deimos lacks an atmosphere, the side of the moon being illuminated by the Sun is considerably warmer than the planet beneath it.

Although it appears as if Deimos is passing in front of Mars from south to north, the image was actually taken as Hera passed very close to Deimos from north to south at high speed.

Deimos appears brighter than Mars. This means that the surface of airless Deimos is hotter than the surface of Mars. The material covering the surface of Deimos has low reflectivity and is pitch black. This allows it to absorb sunlight well and become hotter. In contrast, the surface of Mars is highly reflective, and its atmosphere transports heat from the warm daytime side to the cooler nighttime side. This is why there is a large temperature difference between Mars and Deimos.

These infrared images also tell us the excellent quality of the camera. Note how detailed the features are on the Martian surface. When Hera gets to Didymos/Dimorphos in December 2026 it is going to be able to document those two asteroids in remarkable detail, including the results of the Dart impact on Dimorphos in September 2022.
» Read more

Blue Ghost watches the Earth eclipse the Sun from the Moon

Eclipse as seen by Blue Ghost
Click for original image.

Firefly’s Blue Ghost lunar lander last night successfully recorded images and data as the Earth slowly over hours crossed the face of the Sun, producing an eclipse.

The image to the right, cropped and reduced slightly to post here, is one such image. From the Firefly update page:

Captured at our landing site in the Moon’s Mare Crisium around 3:30 am CDT, the photo shows the sun about to emerge from totality behind Earth. This marks the first time in history a commercial company was actively operating on the Moon and able to observe a total solar eclipse where the Earth blocks the sun and casts a shadow on the lunar surface. This phenomenon occurred simultaneously as the lunar eclipse we witnessed on Earth.

The company has the right to tout its success, since it is the first of five private companies to actually succeed at a landing on the Moon. However, this is not the first such eclipse captured by a lander on the Moon. Surveyor 3 did it in April 1967, while Japan’s Kaguya orbiter did it also in 2009. (Watch this great lecture outlining the entire Surveyor program, presented during the 50th anniversary of its success. Hat tip reader Richard M.)

It is now past noon on the Moon, the temperatures will begin dropping, and Firefly will begin reactivating some instruments for the final week of operations before lunar sunset and shutdown for the long very cold lunar night.

NASA releases Blue Ghost movie landing while Firefly prepares lander to observe solar eclipse of the Moon by Earth

NASA today released a fantastic movie of Firefly’s Blue Ghost lunar lander as it touched down on the Moon on March 2, 2025, taken by four cameras mounted on the underside of its Blue Ghost lunar lander.

I have embedded the movie below.

The compressed, resolution-limited video features a preliminary sequence that NASA researchers stitched together from SCALPSS 1.1’s four short-focal-length cameras, which were capturing photos at 8 frames per second during the descent and landing.

The sequence, using approximate altitude data, begins roughly 91 feet (28 meters) above the surface. The descent images show evidence that the onset of the interaction between Blue Ghost’s reaction control thruster plumes and the surface begins at roughly 49 feet (15 meters). As the descent continues, the interaction becomes increasingly complex, with the plumes vigorously kicking up the lunar dust, soil and rocks — collectively known as regolith. After touchdown, the thrusters shut off and the dust settles. The lander levels a bit and the lunar terrain beneath and immediately around it becomes visible.

Engineers will use this imagery to better anticipate and possibly reduce the amount of dust kicked up during future landings.

Meanwhile, Firefly engineers are preparing the lander to observe tomorrow night’s lunar eclipse, but from a completely different perspective. On Earth we will see the Earth’s shadow slowly over five hours cross the Moon. On the Moon Blue Ghost will see the Earth cross in front of the Sun. Because of our home world’s thick atmosphere, there should be a ring remaining during totality.

Because the Moon will be in shadow during the eclipse, the challenge will be power management, operating the spacecraft solely on its batteries.
» Read more

Graceful isolated dunes at the edge of the sea of dunes that surrounds Mars’ north ice cap

Graceful isolated dunes on the edge of the dune sea that surrounds Mars' north pole
Click for original image.

Cool image time! The picture to the right cropped, reduced, and sharpened to post here, was taken on January 29, 2025 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have also rotated it so north is up. Labeled simply as a “terrain sample,” it was likely taken not as part of any specific research request but to fill a gap in the schedule in order to maintain the camera’s proper temperature.

In this case the timing allowed the camera team to capture this breath-taking picture of these graceful arching dunes sitting in what is likely the near-surface ice sheet that covers much of the red planet’s high latitudes. That sheet is not pure ice, but a complex mixture of ice, dirt, dust, and sand, covered during the winter by a thin mantle of dry ice.

The isolated dunes appear to be ridges sticking up from that flat terrain, but this impression is probably incorrect, based on the location.
» Read more

Astronomers discover 128 more moons around Saturn

Using a ground-based telescope, astronomers have now identified 128 new moons circling Saturn, bringing its moon count to 274, more than the total moons around all the other planets in the solar system combined.

Edward Ashton at Academia Sinica in Taipei, Taiwan, and his colleagues found the new moons with the Canada-France-Hawaii Telescope, revealing dozens that have previously evaded astronomers. They took hours of images of Saturn, adjusted them for the planet’s movement through the sky and stacked them on top of each other to reveal objects that would otherwise be too dim to see.

All the new moons are between 2 and 4 kilometres in diameter and are likely to have been formed hundreds of millions or even billions of years ago in collisions between larger moons, says Ashton.

That Saturn has so many moons should surprise no one. Saturn actually has possibly millions, maybe even billions, of moons, if you count every particle in its rings. In fact, the gas giant poses a problem for astronomers in defining what a moon actually is. How small must an object be before you stop calling it a moon?

SpaceX launches NASA space telescope plus four solar satellites; China launches 18 communication satellites

Two launches to report: First, China yesterday successfully completed its first Long March 8 launch from its new launchpad at its coastal Wenchang spaceport, placing 18 satellites for SpaceSail internet constellation, the fifth group so far launched.

China’s state run press noted that the launchpad is designed to allow the Long March 8 rocket to launch every seven days, a pace needed to place these giant Chinese satellite constellations into orbit.

Next, in the early morning hours today SpaceX successfully launched two different NASA science missions, its Falcon 9 rocket lifting off from Vandenberg in California.

The prime payload was SPHEREx, a space telescope designed to make an all-sky survey. The secondary payload was PUNCH, four satellites forming a constellation to study the Sun.

The rocket’s first stage completed its third flight, landing back at Vandenberg.

The leaders in the 2025 launch race:

27 SpaceX
11 China
3 Russia
2 Rocket Lab

As happened last year, SpaceX handily leads the rest of the world, including American companies, in total launches, 27 to 20. This lead will be extended tonight should the company’s next manned Dragon launch to ISS go off as planned.

Athena located from lunar orbit

Athena on the Moon
Click for original master image.

Using Lunar Reconnaissance Orbiter (LRO), scientists have now located and photographed Intuitive Machines lunar lander Athena where it sits on its side on the Moon.

The picture to the right, reduced to post here, shows that location with the small arrow. This is definitely on Mons Mouton, the intended landing zone about 100 miles from the Moon’s south pole. However at the best magnification provided by the LRO science team, the rover is not visible. Reader James Fincannon was puzzled by this and downloaded the highest resolution version of this image and sent it to me. I have added it to the picture as the inset. Athena is the little white dot in the center of a small 65-foot-wide crater. Note that its shadow falls in the opposite direction of all the shadows in the craters, as the lander projects upward from the surface while the craters descend downward.

One can’t help questioning the quality of the lander’s landing software, if it ended up picking the center of this small crater to touch down, especially considering there appear to be large relatively clear flat areas all around.

Astronomers have discovered four sub-Earth-sized exoplanets orbiting Barnard’s Star

Based on data from several ground-based telescopes, astronomers now believe that Barnard’s Star, the nearest single star to our Sun at a distance of about six light years away, has a solar system of at least four sub-Earth-sized planets.

After rigorously calibrating and analyzing data taken during 112 nights over a period of three years, the team found solid evidence for three exoplanets around Barnard’s Star, two of which were previously classified as candidates. The team also combined data from MAROON-X with data from a 2024 study done with the ESPRESSO instrument at the European Southern Observatory’s Very Large Telescope in Chile to confirm the existence of a fourth planet, elevating it as well from candidate to bona fide exoplanet.

You can read the paper here. The scientists estimate the minimum masses of these exoplanets to range from 19% to 34% that of the Earth, with their maximum mass not exceeding 57% of the Earth. All are believed to be rocky planets orbiting just inside the star’s habitable zone.

Astronomers have been trying to detect exoplanets around Barnard’s Star for more a century. Several previous “discoveries” were later retracted. This result however appears somewhat firm though of course there are a lot of uncertainties in the result.

Europe’s Hera probe to fly past Mars tomorrow

As part of its journey to the binary asteroid Didymos/Dimorphos, the European Space Agency’s (ESA) Hera probe will slingshot past Mars tomorrow, obtaining images and data of both the red planet and its moon Deimos.

Three instruments will gather data, a navigational camera, and infrared camera, and a spectral camera, with the goal mostly to calibrate the instruments and make sure they are working as designed. The data won’t be available until the next day, when the ESA will hold a webcast unveiling the images.

Blue Ghost activates NASA drill, prepares for hot lunar noon

Map of lunar landing sites
Landing sites for both Firefly’s Blue Ghost and
Ispace’s Resilience

More than a week after landing in Mare Crisium, ground controllers have prepared Firefly’s Blue Ghost lunar lander for surviving the very hot lunar noon while also activating NASA’s LISTER drill, which proceeded to successfully drill down into the lunar surface below the lander.

Mounted below Blue Ghost’s lower deck, NASA’s Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) payload is a pneumatic, gas-powered drill developed by Texas Tech University and Honeybee Robotics that measures the temperature and flow of heat from the Moon’s interior.

I have embedded below the video of this drilling operation. At this moment it appears that nine of the lander’s payloads have completed their tasks successfully, with no indication yet that the tenth playload will have problems. All in all, Firefly has succeeded in establishing itself now as the leading private company capable of launching spacecraft to other worlds.
» Read more

Blue Ghost landed almost dead center within its target zone

Blue Ghost on the Moon
Click for before and after blink animation

The picture to the right, taken by Lunar Reconnaissance Orbiter (LRO) prior to the successful landing of Firefly’s Blue Ghost lunar lander, shows its entire landing region. The inset in the lower left is a picture taken by LRO on March 3, 2025, after landing.

The full picture was taken near sunset, with sunlight coming from the left. The inset was taken at sunrise, with sunlight coming from the right. This explains the difference in shadows between the two. Blue Ghost is the white dot in the inset with its long shadow, the black streak, cutting through the nearby crater. The first picture taken from the lander after landing looked down that shadow, looking across the crater.

The new picture tells us that Blue Ghost landed almost dead center in its target zone, indicating that the engineering worked as planned. The lander also used its computer brain to pick a good landing spot and avoid the nearby craters.

A galactic ball and spiral interact

A galactic ball and spiral interact
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope as part of a study of the star populations in these two interacting galaxies. From the caption:

Arp 105 is a dazzling ongoing merger between an elliptical galaxy and a spiral galaxy drawn together by gravity, characterized by a long, drawn out tidal tail of stars and gas more than 362,000 light-years long. The immense tail, which extends beyond this image from NASA’s Hubble Space Telescope, was pulled from the two galaxies by their gravitational interactions and is embedded with star clusters and dwarf galaxies.

The three blue objects on the outskirts of both galaxies are thought to be active star-forming regions. Whether all three are part of this collision is unclear, as the object on the lower right might simply be a foreground object based on the available data.

What makes this galactic pair so intriguing is that the two galaxies are so different with very different theorized histories. Elliptical galaxies (“the ball”) are thought to be very old, the result of the long term evolution of spirals. You would therefore not think an elliptical would normally interact with a spiral, as their ages are likely so dissimilar.

India’s Vikram lunar lander: Data suggests there could be more water impregnated in more places on the Moon

According to scientists analyzing the data sent back from India’s Vikram lunar lander, it appears that water could be impregnated in the upper lunar soil in more places than previously predicted.

You can read their paper here [pdf]. One instrument on the lander measured the temperature of the soil down about four inches, and found the temperature to be 25 degrees Celsius warmer than expected. That location was on a sunward-facing slope, so it was expected to be warmer but not by that amount. From the paper’s abstract:

This demonstrates that local topography at metre scales can alter temperature at high latitudes, unlike equatorial regions. Numerical model calculations using ChaSTE measurements, suggest that larger poleward facing slopes(>14°) at high latitudes can harbour water-ice, making them promising and technically less challenging sites for future lunar exploration and habitation.

In other words, slopes that get much less sunlight near the poles but are not permanently shadowed could still be cold enough only a few inches below the surface to harbor water molecules.

Sounds good, but I am beginning to sense a bit of blarney in these stories, over-pushing the possible existence of water to encourage more government space funding. It might be true that there is more water molecules in more places than predicted, but rarely do these reports say how much, which I expect will be very very little, in the parts per billion range. Nor do these stories ever consider the processing necessary to extract that water. Based on other data obtained from the Shadowcam instrument on South Korea’s Danuri lunar orbiter, it increasingly seems to me that any water found in polar regions of the Moon could be very slight, or even if in large amounts much more difficult to access than anyone ever mentions.

Webb captures infrared view of a baby binary star system and its bi-polar jets

A baby binary in formation
Click for original image.

Cool image time! The infrared false-color picture to the right, reduced and sharpened to post here, was released today by the science team of the Webb Space Telescope. It shows the bi-polar jets spewing out from a newly formed binary of two very young stars as their interact during their formation process.

The two protostars responsible for this scene are at the center of the hourglass shape, in an opaque horizontal disk of cold gas and dust that fits within a single pixel. Much farther out, above and below the flattened disk where dust is thinner, the bright light from the stars shines through the gas and dust, forming large semi-transparent orange cones.

It’s equally important to notice where the stars’ light is blocked — look for the exceptionally dark, wide V-shapes offset by 90 degrees from the orange cones. These areas may look like there is no material, but it’s actually where the surrounding dust is the densest, and little starlight penetrates it. If you look carefully at these areas, Webb’s sensitive NIRCam (Near-Infrared Camera) has picked up distant stars as muted orange pinpoints behind this dust. Where the view is free of obscuring dust, stars shine brightly in white and blue.

To put it more simply, the accretion disk for the binary system lies at right angles to the much larger jets. The rotation of that disk as well as the stars causes those jets to flow up and down from the poles, with the existence of two stars producing the complex patterns in those jets.

As this image was focused mostly on studying the upper jet, it does not show the entire lower jet, which extends beyond the lower border.

Athena sits at an unknown angle on the Moon, hampering operations

Athena's landing site 100 miles from the Moon's south pole
Yellow cross indicates Athena’s targeted landing site

According to the CEO of Intuitive Machines, Athena is sitting an an unknown angle on the Moon, impacting the possibility of all surface science operations.

The tilt is hampering their ability to use the high gain antenna which they need use to download most of their data. They do not know the angle, or the cause of this issue. It could simply be that the ground slope is too severe. It is also possible the spacecraft, which has a relatively high center of gravity, fell over on its side because of that slope. Moreover, they do not know at the moment exactly where the spacecraft landed, though they know it landed on Mons Mouton as planned. They need to download pictures from the spacecraft, as well as from Lunar Reconnaissance Orbiter (LRO) in orbit to determine precisely the location and the situation.

It is also unclear what payloads will be impacted by this situation. It could be that most if all could be utilized, but that question cannot be answered until they learn more. I suspect both the mini-rover and the Grace hopper will be affected the most, as the tilt might make it impossible to deploy either.

For Intuitive Machines this situation is very unfortunate. It has sent two unmanned lunar landers, and both have had issues at landing, though it must be emphasized that the issue on today’s second landing might have nothing to do with the company’s engineering at all.

Is a supermassive black hole is hidden in the Large Magellanic Cloud?

Based on the motions of a number of runaway stars on the edge of the Milky Way that are moving so fast they will leave the galaxy, astronomers believe that many were accelerated not by the galaxy’s own central supermassive black hole but a previously undetected supermassive black hole at the center of the Large Magellanic Cloud, one of the Milky Ways nearby dwarf galaxies.

To make this discovery, researchers traced the paths with ultra-fine precision of 21 stars on the outskirts of the Milky Way. These stars are traveling so fast that they will escape the gravitational clutches of the Milky Way or any nearby galaxy. Astronomers refer to these as “hypervelocity” stars.

Similar to how forensic experts recreate the origin of a bullet based on its trajectory, researchers determined where these hypervelocity stars come from. They found that about half are linked to the supermassive black hole at the center of the Milky Way. However, the other half originated from somewhere else: a previously-unknown giant black hole in the Large Magellanic Cloud (LMC).

You can read the paper here [pdf]. This result was made possible by the very precise location and velocity data of over a billion stars measured by Europe’s Gaia satellite.

Based on the available data, the scientists estimate (with great uncertainty) the mass of this supermassive black hole, which the scientists have dubbed LMC* (pronounced “LMC star”), to be about 600,000 times the mass of the Sun, quite big but significantly less than the mass of the Milky Way’s central black hole, Sagittarius A* (pronounced “A-star”), which is estimated to be about 4.3 million times the mass of the Sun.

The mystery to solve now is why this super massive black hole is so quiet. It has literally emitted no obvious energy in any wavelength in the past seven decades, since ground- and space-based telescopes went into operation capable of detecting such emissions. Even the relatively inactive supermassive black hole at the Milky Way’s center, Sagittarius A* (pronounced “A-star”) emits distinct radio energy that the first radio telescopes were able to detect almost immediately.

Intuitive Machines’ Athena lander touches down softly; engineers are assessing spacecraft condition

Though Intuitive Machines’ Athena lander has apparently softly landed near the south pole of the Moon, there remains uncertainty about the spacecraft’s status. Engineers have contact with Athena, and are apparently shutting down the landing equipment in order to make Athena safe for surface operations.

Unlike the previous landing, the spacecraft is upright and responding fully as expected. It appears the main issue is the position of Athena relative to the horizon. This is important as it determines the best antenna’s to use to upload and download data to and from Earth.

A full update will be provided at a press conference scheduled for 4 pm (Eastern) today. I have embedded the live stream of that conference below.
» Read more

Scientists discover the oldest known crater on Earth

Though erosion has made it visibly unnoticeable now, scientists have discovered geological features 3.5 billion years old in northwestern Australia that suggest the location is the oldest impact crater known on Earth.

The crater was discovered by geologists at Curtin University and the Geological Survey of Western Australia in the Pilbara region of northwestern Australia. While it’s hard to see directly as a classic crater shape, due to its age, the team found it through other evidence – namely “shatter cones,” geological features that form only when exposed to extreme pressures, like meteorite impacts or underground nuclear explosions.

The newly discovered crater is estimated to be at least 100 km (62 miles) wide, which suggests the original object that crashed into Earth was traveling at more than 36,000 km/h (22,000 mph), and would have caused destruction on a global scale. The impact appears to have occurred 3.47 billion years ago. “Before our discovery, the oldest impact crater was 2.2 billion years old, so this is by far the oldest known crater ever found on Earth,” said Professor Tim Johnson, co-lead author of the study.

You can read the published paper here. There are many assumptions and uncertainty in this conclusion, but it is likely correct.

The impact likely occurred during a time period scientists call the Late Heavy Bombardment, when the planets in the solar system were beginning to accrete out of the thick disk of dust and rocks that surrounded the Sun. On Earth most of the evidence of this bombardment is gone, destroyed by erosion and plate technoics. We only know about it from the craters on the Moon, Mercury, and Mars, where erosion has left those impacts mostly untouched.

Future now very dim for Lunar Trailblazer

Though engineers are continuing attempts to re-establish contact with the orbiter Lunar Trailblazer as it flies outward after launch, the situation is becoming increasingly grim.

Based on telemetry before the loss of signal last week and ground-based radar data collected March 2, the team believes the spacecraft is spinning slowly in a low-power state. They will continue to monitor for signals should the spacecraft orientation change to where the solar panels receive more sunlight, increasing their output to support higher-power operations and communication.

The problem is that, without communications, the spacecraft was not able to do several mid-course corrections that would have sent it on the right path to the Moon. Though it might still be possible to get it to the Moon, communications must be re-established soon to do so.

Europa Clipper completes Mars fly-by

Data from Europa Clipper has now confirmed that its March 1, 2025 Mars fly-by was successful, putting it on the right trajectory to do a fly-by of Earth in December 2026.

When Europa Clipper launched, navigators deliberately aimed a little away from Mars to avoid any possibility of a launch error turning into a Mars impact. Since then, they’ve performed three deep-space trajectory correction maneuvers to line up for the encounter. Europa Clipper whizzed by Mars at 17:57 UT, only 2 km away from the target height of 884 km. A final maneuver, planned for March 17th, will correct any residual trajectory error.

Only two instruments were activated, mostly as tests to see if they were operating properly. Though the data has not yet been downloaded back to Earth, engineers say that it appears all worked as expected.

If the Earth fly-by in 2026 is successful, Europa Clipper will rendezvous with Jupiter in April 2030, entering an orbit that will fly past Europa numerous times.

Blue Ghost lunar surface operations proceeding as planned

According to a Firefly update today, all of Blue Ghost’s planned lunar surface operations are working as planned.

Eight out of 10 NASA payloads, including LPV, EDS, NGLR, RAC, RadPC, LuGRE, LISTER, and SCALPSS, have already met their mission objectives with more to come. Lunar PlanetVac for example successfully collected, transferred, and sorted lunar soil from the Moon using pressurized nitrogen gas.

I have embedded below the video posted at the link of Lunar PlanetVac deploying and then blowing that gas to capture surface soil.
» Read more

Engineers turn off one more instrument on each Voyager spacecraft

The Voyager missions
The routes the Voyager spacecraft have
taken since launch. Not to scale.

Due to continuing reductions in the power generated by their nuclear energy sources (after a half century of operation) engineers have now turned off one more science instrument on each Voyager spacecraft in order to extend the spacecrafts’ life as long as possible.

Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.

Even with this action, the future lifespan of both spacecraft is very limited. It is expected the savings in power will allow both to last about a year longer, well into 2026. In order to keep the Voyagers operating as long as into the 2030s mission engineers are now working up a timeline for shutting down the remaining instruments in a step-by-step manner. In that long run the goal won’t be science gathering but engineering. Can humans keep a spacecraft operating for more than a half century at distances billions of miles away?

Lunar Reconnaissance Orbiter snaps picture of Blue Ghost on the Moon

Blue Ghost on the Moon
Click for full image. For original of inset go here.

Shortly after Firefly’s Blue Ghost lunar lander touched down within Mare Crisium on the Moon, the science team for Lunar Reconnaissance Orbiter (LRO) used it to capture a picture of lander on the surface of the Moon.

That image is to the right, reduced to post here. The inset was expanded and sharpened to bring out the details, with the arrow showing Blue Ghost, that tiny dot in the center with a shadow to the right.

The Firefly Blue Ghost lunar lander set down on 2nd March 2025. The landing site (arrow) is about 4000 meters from the center of Mons Latreille, a large volcanic cone [seen to the left].

…LRO was 175 kilometers east (19.294°N, 67.956°E) of the landing site when the NACs acquired this dramatic view of the landing site on 02 March 2025 at 17:49 UTC.

Blue Ghost landed shortly after lunar sunrise, and is designed to operate for one full lunar day (fourteen Earth days). Whether it can survive the 14-day-long lunar night won’t be known until the next sunrise.

1 5 6 7 8 9 281