Rocket Lab completes new capsule for Varda

Varda's space capsule, on the ground in Utah
Varda’s first capsule on the ground in Utah.

Rocket Lab today announced it has completed testing and intergration of a new recoverable capsule for the in-space manufacturing company Varda, to be used in orbit to produce pharmaceuticals that can only be created in weightlessness.

No launch date was announced. This was the second of four capsules Rocket Lab is building for Varda, with the first having already completed its flight, where it returned to Earth after successfully crystallizng the HIV drug Ritonavir.

The most important tidbit in the press release however was this:

Varda received permission from the FAA under a Part 450 license earlier this month, making them the only company to ever secure a second reentry license.

With the first capsule, the capsule’s return was delayed almost six months because the FAA and the military couldn’t get their paperwork together to approve the return license. Varda now has that return license in hand before launch, meaning it will get the capsule back when it wants.

The jet 3,000 light years long that causes nearby stars to explode

The jet from M87
Click for original image.

Cool image time! The picture to the left, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope of the giant eliptical galaxy M87, known for more than a century by astronomers for the jet of gas that points outward from its center. Astronomers now know that this jet is produced by a supermassive black hole in the center of M87, weighing 6.5 billion times the mass of our Sun.

The blowtorch-like jet seems to cause stars to erupt along its trajectory. These novae are not caught inside the jet, but are apparently in a dangerous neighbourhood nearby. During a recent 9-month survey, astronomers using Hubble found twice as many of these novae going off near the jet as elsewhere in the galaxy. The galaxy is the home of several trillion stars and thousands of star-like globular star clusters.

M87 is considered an old galaxy, but its entire formation process remains uncertain.

The mess that presently exists in science

Lysenko with Stalin
Trofim Lysenko (on the left), preaching to Stalin as he destroyed
Soviet plant research by persecuting anyone who disagreed with him,
and caused famines that killed millions.

Two stories today in the peer-review journal Science illustrate bluntly the dry rot that has seeped into the entire peer-review scientific community, much of it caused by the politics and incompetence that always follows when too much government money is available to hand out.

In the first story, Science simply provided a horrifying overall summary of the misconduct and research fakery committed by Eliezer Masliah, who as head of the the Division of Neuroscience at the National Institute of Aging (NIA) beginning in 2016 was crucial in recommending who would get major grants for doing research into diseases like Alzheimer’s.

Masliah’s own published peer-reviewed research into Alzheimer’s helped guide him in awarding grants. His work had said that proteins found in brain tissue were a major factor in causing the disease, and thus based on his recommendations for the next decade huge amounts of money were devoted to following up that conclusion.

The problem was that Masliah’s work was garbage.
» Read more

Monitoring gullies on Mars for changes

Overview map

Monitoring gullies on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on June 29, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). The scientists label the picture simply as “gully monitoring,” with an apparent goal of looking to see if this gully has changed since MRO took the first high resolution image two years previously. In the interim this terrain went from Martian spring, through summer and winter, and has now returned to spring.

As far as I can tell, no changes are visible, but then I am not using the highest resolution data available. Small changes might be detectable in the highest resolution using good detection software. Overall, the gully drops about 3,000 feet.

The white dot in the overview map above marks the location, on the southwest interior rim of an unnamed 30-mile wide crater. This region in the Martian cratered highlands was featured in a four part cool image series I did back 2023 (here, here, here, and here), with this as my conclusion:

Overall, our short survey of the southern cratered highlands suggests that the glacial material and ice found in the southern mid-latitudes affects the Martian surface differently than in the northern lowland plains. In the north the craters and the surrounding terrain often appear blobby, as if the ice is close to the surface and also a dominant component of the ground. Impacts therefore cause significant soft melt features, with craters often heavily distorted. Similarly, there is evidence of the existence of past mud volcanoes that once spewed water and mud from below ground.

In the south however the surface is at a higher elevation, and it appears the ice layer is deeper underground. Thus, it appears the ground is more firm, and the only obvious evidence of an underground layer of ice is revealed when sublimation and the subsequent erosion produce these large pits inside craters.

In the case of this crater, a small impact on its interior southwest slope apparently caused that underground layer of ice to melt temporarily and flow downhill, leaving behind the gully and flow features we see today. Based on the two MRO pictures taken a full Martian year apart, it appears the feature is generally stable and thus likely old, left over from that impact. If things are changing seasonally they are doing so in small amounts and slowly.

Researchers identify the oldest cheese so far found, from 3,600 years ago

One of the ancient cheese samples
Click for full image, figure 1 from the paper.

Researchers have confirmed that three clumps of organic matter taken from a gravesite in northwestern China are the oldest samples of cheese yet identified — more than 3,600 years old — and are in fact a specific kind of cheese, called kefir cheese.

And it’s not just any cheese: Cow and goat DNA, as well as the bacterium Lactobacillus kefiranofaciens, has indicated that these clumps were in fact kefir cheese, providing insight into the history and evolution of probiotics and human health. L. kefiranofaciens is still a key microorganism in kefir soft cheeses. The researchers also identified the microscopic fungal species Pichia kudriavzevii, which is a type of yeast found in kefir grains today.

These kefir grains contain a host of probiotic bacteria and yeast, which is key in fermenting milk to produce kefir products that have been studied for their health impacts, particularly in the areas of the immune and gastrointestinal systems, as well as metabolic regulation.

“Our observation suggests kefir culture has been maintained in Northwestern China’s Xinjiang region since the Bronze Age,” Fu said.

You can read the published paper here. The researchers suggest the cheese indicates not only the evolutionary history by which humans began creating such diary products, it also suggests the historical routes this process followed across the European and Asian continents.

A puzzling striped rock on Mars

A striped rock on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on September 13, 2024 by one of the high resolution cameras on the Mars rover Perseverance. The rock’s striped nature makes it unique, unlike any feature spotted by any rover previously. From an update today:

The science team thinks that this rock has a texture unlike any seen in Jezero Crater before, and perhaps all of Mars. Our knowledge of its chemical composition is limited, but early interpretations are that igneous and/or metamorphic processes could have created its stripes. Since Freya Castle [the name the science team gave the rock] is a loose stone that is clearly different from the underlying bedrock, it has likely arrived here from someplace else, perhaps having rolled downhill from a source higher up. This possibility has us excited, and we hope that as we continue to drive uphill, Perseverance will encounter an outcrop of this new rock type so that more detailed measurements can be acquired.

Without doubt the rock’s rounded surface suggests it was ground smooth by either water or ice. That surface certainly resembles glacial cobble seen across the northeast of the U.S. where ice glaciers once covered the entire landscape. The rock also resembles river cobble, smoothed by flowing water.

The stripes however suggest that prior to its being smoothed, this rock underwent a much more complex geological process, whereby two different materials were intermixed and squeezed together.

Layered mesas in Martian chaos

Layered mesas in Martian chaos
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on May 19, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a 2,500 to 3,000-foot-high mesa with what the scientists call “bedrock layers”, most obvious as the lower terraces on the mesa’s western slopes.

What makes this mesa especially interesting is its overall shape. It appears as if something has taken a bite out of it, resulting in that bowl-like hollow on the mesa’s southern half.

Was this caused by an impact? Or has some other long term Martian processes caused it?

This mesa is just one of many mesas in a region of chaos terrain dubbed Hydraotes Chaos. Such chaos terrain is thought to form when erosion processes, possibly glacial in nature, that carve out canyons along faultlines, leaving behind mesas with randomly oriented canyons cutting in many directions.
» Read more

Observations of solar flares do not match the standard model used to explain their origin

The uncertainty of science: When scientists carefully compared new and much more precise observations of the Sun’s solar flares with the standard model they have used for decades to explain their origin, they found unexpected differences, suggesting the model is wrong or imcomplete.

In sum, none of the processes simulated in accordance with the model proved capable of explaining the observational data. The conclusion drawn by the researchers was obvious to some extent: the standard model of solar flares needs to be reformulated, as required by the scientific method.

The scientists found that the two sources of each flare brightened at slightly different times. The model said these sources should brighten almost simulatanously, and no version of the model could explain the contradiction.

All this means is that the researchers simply don’t have enough data or understanding of the Sun to formulate a model that can fully explain the process. This study simply demonstrates this, but also provides a guide for soliving the problem.

Bioengineered heart samples on ISS confirm that weightlessness weakens and ages the heart

Using 48 bioengineered heart samples that spent 30 days on ISS in 2020, scientists have confirmed other research that showed weightlessness not only weakens the heart, it ages it as well.

In addition to losing strength, the heart muscle tissues in space developed irregular beating (arrhythmias)—disruptions that can cause a human heart to fail. Normally, the time between one beat of cardiac tissue and the next is about a second. This measure, in the tissues aboard the space station, grew to be nearly five times longer than those on Earth, although the time between beats returned nearly to normal when the tissues returned to Earth.

The scientists also found, in the tissues that went to space, that sarcomeres—the protein bundles in muscle cells that help them contract—became shorter and more disordered, a hallmark of human heart disease. In addition, energy-producing mitochondria in the space-bound cells grew larger, rounder and lost the characteristic folds that help the cells use and produce energy.

Finally …[t]he tissues at the space station showed increased gene production involved in inflammation and oxidative damage, also hallmarks of heart disease.

None of this is ground-breaking, as it confirms numerous other past studies. What it does do however is confirm that long-term weightlessness is not good for a person’s heart. Many studies have shown that these issues mostly go away once astronauts return to Earth, but for any journey to Mars, involving two years in weightlessness, this data suggests the health risks will be far higher.

More deterioration to Curiosity’s worst wheel

Comparison of changing damage from Feb to Sept 2024
For original images go here, here, and here.

The science team for the Curiosity Mars rover on September 22, 2024 did another survey of its damaged wheels using the close-up camera on the end of the rover’s arm, and though most of the pictures appear to show the situation remains stable, the one wheel that has consistently shown the worst damage now shows some additional deterioration since February 2024.

To the right are comparison pictures, with the February 2024 picture on top and two new September 22, 2024 images showing the same damaged area, though from a different angle, on the bottom. (The technical captions for the bottom images can be found here and here.) I have labeled the treads, dubbed growsers, to make it easier to understand how the pictures all line up.

Previous images have looked down at the large damaged area from growsers 1 to 4, and since it was first spotted in 2022 showed it to be growing, but very slowly. The new pictures show that same damaged area from the side, which reveals that the zig-zag divider between growser #3 and growser #4 has now collapsed, so that this whole damaged area is now a major depression, as indicated by the two arrows.

Overall, the rover’s wheels appear to surviving the rough terrain of the foothills of Mount Sharp, though it is clear that care must continue to be taken to extend their life for as long as possible. That the rover has six wheels gives it a lot of redundancy, so that even if this one wheel eventually fails the rover will likely be able to continue to rove, but with some limitations. This wheel is the left middle wheel, which is helpful, as it is less necessary than the four corner wheels. [Update: According to a rover update today, this wheel is the right middle wheel, which contradicts an earlier report which described this as the left middle wheel. I note this contradiction for accuracy.]

Land of cracks

Land of cracks

Cool image time! The picture to the right, cropped to post here, was taken on June 28, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Labeled a “terrain sample,” it was likely taken not as part of any specific research project but to fill a gap in the camera’s schedule in order to maintain its proper temperature. When the camera team needs to do this, they try to pick something interesting, but don’t always have that option.

In this case, the landscape available included the channel shown to the right. About a half mile wide and only about fifty feet deep, the floor of this canyon appears to have a lot of trapped dust, forming ripple dunes, along with a lot of knobby protrusions, likely small mesas. The canyon walls appear layered, with the erosion processes producing different features on opposite sides. On the southeast the layers appear to produce distinct terraces, while on the northwest the cliff is very steep at the top and then forms a long gently descending slope that appears formed of alluvial fill (from that cliff) and formed from erosion and landslides.
» Read more

SpaceX finds a way to extend the launch window for Europa Clipper

The launch window for SpaceX’s launch of NASA’s Europa Clipper to Jupiter has now been extended a full week because the company has revised the launch process and made hardware changes.

The new launch window runs from October 10th to November 6th.

Usually the two side boosters come back to land at Cape Canaveral Space Force Station so they can be reused and sometimes the core booster is recovered at sea, but not this time. All their fuel will be used to get Europa Clipper on its way to Jupiter. Piloto said SpaceX “made some hardware modifications that enable the launch vehicle to utilize all the fuel in the boosters,” but couldn’t go into detail about what they are because the information is proprietary.

[The NASA official] added that SpaceX has gained experience in flying this configuration — it’s the 11th Falcon Heavy launch — and the company has “come up with a strategy to optimize throttling of the launch vehicle to get more performance out of it.”

NASA and SpaceX have also decided to use NASA’s orbiting communications constellation during the launch instead of ground stations, which increases their flexibility and margins.

I wonder if the FAA has approved these changes. Or even if anyone there even understands them.

Webb takes an infrared look at a galaxy looked at by Hubble

Comparing Hubble with Webb
For original images go here and here.

Cool image time! The bottom picture on the right, cropped to post here, is a just released false color infrared image of the galaxy Arp 107, taken by the Webb Space Telescope. The picture at the top is a previously released optical image taken by the Hubble Space Telescope and featured as a cool image back in September 2023. The Hubble image was taken as part of a survey project to photograph the entire Arp catalog of 338 “peculiar galaxies,” put together by astronomer Halton Arp in 1966. In this case Arp 107 is peculiar because it is actually two galaxies in the process of merging. It is also peculiar because the galaxy on the left has an active galactic nuclei (AGN), where a supermassive black hole is sucking up material and thus emitting a lot of energy.

The Webb infrared image was taken to supplement that optical image. The blue spiral arms indicate dust and star-forming regions. The bright orange object in the center of the galaxy is that AGN, clearly defined by Webb’s infrared camera.

When I posted the Hubble image in 2023, I noted that “if you ignore the blue whorls of the left galaxy, the two bright cores of these merging galaxies are about the same size.” In the Webb image the two cores still appear about the same size, but in the infrared they produce emissions in decidedly different wavelengths, as shown by the different false colors of orange and blue. The core of the galaxy on the right is dust filled and forming stars, while the core of the left galaxy appears to have less dust with all of its emissions resulting from the energy produced by the material being pulled into the supermassive black hole.

The universe is very active and changing, but to understand that process we humans have to look at everything across the entire electromagnetic spectrum, not just in the optical wavelengths our eyes see.

Newly discovered potentially dangerous asteroid found to be a contact binary

Radar images of asteroid 2024ON
Click for original image.

Radar images taken during the close fly of a newly discovered potentially dangerous asteroid has revealed that it is a contact binary, formed by two objects stuck together to produce a single asteroid with a peanutlike shape.

Discovered by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) on Mauna Loa in Hawaii on July 27, the near-Earth asteroid’s shape resembles that of a peanut. Like the asteroid 2024 JV33 that made close approach with Earth a month earlier, 2024 ON is likely a contact binary, with two rounded lobes separated by a pronounced neck, one lobe about 50% larger than the other. The radar images determined that it is about 755 feet (350 meters) long. Features larger than 12.3 feet (3.75 meters) across can be seen on the surface. Bright radar spots on the asteroid’s surface likely indicate large boulders. The images show about 90% of one rotation over the course of about six hours.

The radar images were taken one day before that close approach of 620,000 miles on September 17, 2024, and once again show that a large number of near-Earth asteroids, as much as 14%, are contact binaries. The data also helped better refine 2024ON’s orbit around the Sun, which show that though the asteroid has the potential to hit the Earth, its path will not do so for the foreseeable future.

Phobos rising and Earth setting as captured together by Curiosity

Phobos and Earth in the Martian sky
Click for original image.

Cool image time! The picture to the right, enhanced and reduced to post here, was taken by the high resolution camera on the Mars rover Curiosity on September 5, 2024.

What makes this picture unique are the two tiny spots near the upper right. For the first time, Curiosity’s camera was able to capture both the Earth and the Martian moon Phobos in the same picture, when they were also very close to each other in the sky. From the caption:

NASA’s Curiosity Mars rover used its Mast Camera, or Mastcam, to capture this view of Earth setting while Phobos, one of Mars’ two moons, is rising. It’s the first time an image of the two celestial bodies have been captured together from the surface of Mars.

The image is a composite of five short exposures and 12 long exposures all taken on Sept. 5, 2024, the 4,295th Martian day, or sol, of Curiosity’s mission. An inset in the image [found here] shows Phobos on the left and Earth on the right. From the rover’s perspective, the inset area would be about half the width of a thumb held at arm’s length.

The dark shape in the lower left is one of the buttes that surround Curiosity as it has been climbing up Mount Sharp and traversing inside the Gediz Vallis slot canyon.

The inset provides a close-up of the two objects, but the resolution is poor. To me, it is much more interesting to look at the picture to the right, that shows what these two objects actually looked like in the sky of Mars.

Some new “What the heck?” geology on Mars

What the heck is going on here?
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on April 21, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

My first reaction on seeing this picture was to scratch my head? What am I looking at? Are those fluted dark features going downhill to the south, or uphill to the north? What are they? Are they slope streaks? Avalanches? How do they relate to the flat-topped ground in the middle of the picture?

I have made it easier for my readers to interpret the picture by adding the “low” and “high” markers. We are looking at two parallel thin mesas about 1,400 feet high, with the saddle between them only dropping about 350 feet.

But what about the dark fluted features? To understand what these are requires more information.
» Read more

What the Milky Way would look like if it was presently a star forming powerhouse

A galaxy as seen by Hubble and Webb
For the original images go here and here.

Cool image time! The two pictures to the right, taken respectively by the Hubble and Webb space telescopes of the same galaxy, shows us many different features of a barred galaxy, located about 35 million light years away. From the caption for the Hubble image:

This picture is composed of a whopping ten different images taken by the Hubble Space Telescope, each filtered to collect light from a specific wavelength or range of wavelengths. It spans Hubble’s sensitivity to light, from ultraviolet around 275 nanometres through blue, green and red to near-infrared at 1600 nanometres. This allows information about many different astrophysical processes in the galaxy to be recorded: a notable example is the red 656-nanometre filter used here. Hydrogen atoms which get ionised can emit light at this particular wavelength, called H-alpha emission. New stars forming in a molecular cloud, made mostly of hydrogen gas, emit copious amounts of ultraviolet light which is absorbed by the cloud, but which ionises it and causes it to glow with this H-alpha light.

Therefore, filtering to detect only this light provides a reliable means to detect areas of star formation (called H II regions), shown in this image by the bright red and pink colours of the blossoming patches filling NGC 1559’s spiral arms.

The Z-shaped blue indicates the stars and its most distinct spiral arms. Astronomers presently believe that the Milky Way is also a barred spiral like this, though its star-forming regions are thought to be far less extensive and distinct.

The Webb infrared image matches the Hubble data, with the false color blue indicating the near-infrared and the false color red the mid-infrared. As with the Hubble picture, the red indicates the galaxy’s extensive star forming regions.

Two Russian astronauts mark one year in orbit

Russian astronauts Oleg Kononenko and Nikolay Chub today marked the one year anniversary of their launch in 2023, thus marking another Russian yearlong mission in space.

The two cosmonauts were sent to the orbit aboard the Soyuz MS-24 manned spacecraft, which blasted off from the Baikonur space launch center on September 15, 2023. The third crew member on board was NASA astronaut Loral O’Hara, who returned to the Earth on April 6, 2024. Kononenko and Chub, as well as NASA astronaut Tracy Dyson, will travel back aboard the Soyuz MS-25 spacecraft, whose departure is scheduled for September 23.

Their return next week will not mark a record for the longest flight in space. That belongs to Valeri Polykov, who occupied the Soviet-built Mir space station in the mid-1990s for one year, two months, and two weeks in the mid-nineties, or 438 days. The second longest flight was by Sergey Avdeev, 380 days on Mir in 1998-1999, with the third longest flight by Sergey Prokopyev, Dmitry Petelin, and Franco Rubio, 371 days in 2022-2023.

When Kononenko and Chub return on September 23rd, their flight will 373 days long, passing the 2022-2023 mission.

Note that only one American is on this list. A few have flown almost a year, but only Rubio has made it, and that was forced on him unplanned because of problems with the Soyuz capsule that brought him into orbit. He was forced to stay up an extra six months and come down on the next Soyuz.

The reason for this lack of long American flights is entirely NASA’s fault. It has consistently resisted doing such long missions, even holding the Russians back during the first two decades of ISS’s operation. The Russians no longer follow NASA’s timidity, and have been doing more such missions, because such missions will be the only way to gather the necessary medical data needed for future missions to Mars.

Meanwhile, NASA hesitates, and sometimes touts eleven-month missions (such as Scott Kelly’s) as year-long missions, a blatant lie that our propaganda press repeats mindlessly. I fully expect the first planned year-long American mission will be done privately, outside of our government, once Starship begins flying regularly.

Bad consequences from the medical profession’s panic/lies over COVID continue to build

The results of COVID policy decisions of our medical community
The results of COVID policy decisions
for our medical community

Several stories in the past week illustrate how the medical community dug itself a deep hole with its dishonest panic and over-reaction to COVID and its response to it.

First the background from 2020: Rather than follow past very successful policies involving new epidemics, whereby only the sick and aged were quarantined while everyone else went about their normal lives, intentionally spreading the new respiratory virus to those with which it was relatively harmless so that the entire population could quickly get herd immunity and thus quickly choke the virus out, our modern medical community, in conjunction with government health officials who had political motives, chose to quarantine everyone, destroying the economy and the livelihoods of millions while actually allowing the disease time to spread to the aged and sick, killing many more than were necessary.

Numerous studies have confirmed the failure of the lockdown and mandate policies during COVID. Sweden for example essentially followed those traditional policies, never locking down or mandating masks or shots. It was blasted for that decision, with many in the health community predicting massive deaths from COVID. Instead, studies have now proven that Sweden had the lowest mortality in Europe from 2020–2022.

That’s the background. The new stories this week illustrate the consequences. First, a recent peer-reviewed study found that trust in doctors has crashed since 2020. The numbers are quite shocking:
» Read more

Perservance looks back from on high

Perservance's view looking back down Neretva Vallis
Click for original image.

Cool image time! The picture above, cropped to post here, was taken on September 9, 2024 by the left navigation camera on the Mars rover Perseverance, looking east and back along the route from which the rover had come.

The view is somewhat more spectacular than most Perseverance images because the rover took it during its on-going climb up unto the rim of Jezero Crater, as shown by the overview map below. The blue dot marks Perseverance’s present position, while the yellow lines indicate the area covered by the picture above, taken several days earlier.

The haze in the picture also suggests that the local dust storm first noted in late August might be clearing somewhat. This isn’t certain, however, as the previous picture was using the rover’s high resolution camera to look at distant hills (thus more obscured), while the picture above was taken by the left navigation camera looking more widely and at nearer objects.

Overview map
Click for interactive map.

Intuitive Machines targeting January 2025 for launch of its next lunar lander

The landers either at or targeting the Moon's south pole
The landers either at or targeting the Moon’s south pole

The company Intuitive Machines is now aiming to launch its second Nova-C lunar lander, dubbed Athena, during a January 1-5, 2025 launch window.

The landing site is indicated on the map to the right, on the rim of Shackleton crater and almost on top of the south pole. While Chang’e-7 is targeting the same crater rim, it is not scheduled for launch until 2026.

The lander will not only include a drill for studying the surface below it, it will release a small secondary payload, the Micro-Nova Hopper, which will hopefully hop down into the permanently shadowed craters nearby.

The launch will also carry a lunar orbiter, dubbed Lunar Trailblazar, which will not only do spectroscopy of the lunar surface, looking for water, it will also be used as a communications relay satellite with Athena. That orbiter, designed to demonstrate the ability to build a smallsat at low cost, was previously threatened with cancellation because its builder, Lockheed Martin, went way over budget.

New gravity map of Mars released

New global map of Mars gravity field
Click for original image.
Using both seismological data compiled over four years by the InSight Mars lander as well tiny changes in the orbits of Martian satellites, scientists have now created a global gravity map of the red planet, indicating the regions below the surface that are either low or high density.

That map is above, annotated by me to indicate some of Mars’ major surface features.

The density map shows that the northern polar features are approximately 300-400 kg/m3 denser than their surroundings. However, the study also revealed new insights into the structures underlying the huge volcanic region of Tharsis Rise, which includes the colossal volcano, Olympus Mons.

Although volcanoes are very dense, the Tharsis area is much higher than the average surface of Mars, and is ringed by a region of comparatively weak gravity. This gravity anomaly is hard to explain by looking at differences in the martian crust and upper mantle alone. The study by Dr Root and his team suggests that a light mass around 1750 kilometres across and at a depth of 1100 kilometres is giving the entire Tharsis region a boost upwards. This could be explained by huge plume of lava, deep within the martian interior, travelling up towards the surface.

I once again note that the largest impact basin on Mars, Hellas Basin, sits almost exactly on the planet’s far side from Tharsis, and appears to have a light density. This contrast once again makes me wonder if the origin of that impact and the Tharsis Bulge are linked.

A fluted mesa on Mars

A fluted mesa on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on July 9, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the science team labels a “silica-rich mound”, as indicated by the bright streaks on all the high ridge points.

The flat-topped mesa on the right drops about 200 feet to the valley floor. The rims of that depression to the west rise about 50+ feet higher, while mesa nose in the upper left rising another 50+ feet more.

Was the depression caused by an impact? If so, the landscape has changed radically since that impact occurred, with most of the surrounding terrain eroded away. The two flat-topped mesas hint at the ancient surface when that impact occurred.

A wider view however raises questions about this impact theory.
» Read more

Scientists re-create on Earth the sublimation of Mars’s winter mantle of dry ice

Spiders created on Earth
Click for original image.

Scientists have successfully re-created on Earth the process on Mars that creates the unique “spider” formations seen in the the Martian south pole region, produced when the winter mantle of dry ice begins to sublimate away into a gas.

The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.

At the south pole, the ground below the mantle is stable enough that each winter the trapped CO2 gas follows the same path to the same points where the dry ice cracks, slowly creating “tributaries” that combine to form the spider formations.

The picture to the right, cropped, reduced, and sharpened to post here, comes from figure 9 of the paper [pdf]. It shows the lab-created spiders formed by this simulated process, thereby confirming this hypothesis about how the spiders form.

Ispace targeting a December launch for its second attempt to softland on the Moon

Landing zone for Resilience lander

At a press conference yesterday officials of the Japanese company Ispace announced that they are now targeting a December 2024 launch of their second Hakuto-R lunar lander, dubbed “Resilience”, with the landing site located in the high mid-latitudes of the near-side of the Moon.

The map to the right indicates that location, inside Mare Frigoris. Atlas Crater is where Ispace attempted but failed to soft land its first lunar lander, Hakuto-R1, in April 2023.

This new lander will be launched on a Falcon 9 rocket. It carries six commercial payloads. It also appears the company decided to go for an easier landing site on this second mission. Rather than try to land inside a crater, it is targeting a very large and flat mare region, thus reducing the challenges presented to its autonomous software.

Ispace already has contracts both with NASA ($55 million) and Japan’s JAXA space agency ($80 million) for two more future landers, so a successful landing this time is critical to the company’s future.

A map of Io’s hot spots based on Juno data

The hot spots on Io
Click for original image.

The uncertainty of science: Using the JIRAM infrared camera on the Jupiter orbiter Juno, scientists have now created a global map of volcanic activity, showing where it appears the hottest and greatest activity is located.

That data is illustrated by the graphic to the right, taken from figure 1 of the paper. The top row shows the coverage of the planet, with Io’s southern hemisphere getting the fewest observations. The bottom row shows the observed regions with the greatest heat. This quote from the abstract is most revealing:

Using JIRAM, we have mapped where volcanoes are producing the most power and compared that to where we expect higher heat flow from the interior models. Our map doesn’t agree with any of these models very well. JIRAM observed more volcanic activity at the poles than we expected to see based on previous observations. However, since the south pole was only observed twice, it’s possible that these observations don’t represent the average volcanic activity of the south pole. Very bright volcanoes that may have been continuously active for decades were also imaged during these Juno fly-bys, some of which are nearer the poles than the equator.

The conflict between the data and the theories could very well be explained simply by the short term nature of these observations. The models could very well be right, over centuries. For example, the new volcano discovered by Juno is near the equator, suggesting with time those models will turn out to be correct.

Or not. A lot more observations will have to be made of Io before any model of its volcanic activity can be considered trustworthy.

Juno discovers new volcano on Io

New volcano on Io
Click for original image.

By comparing images taken twenty-seven years apart by the the Jupiter orbiters Galileo and Juno, scientists have discovered that during that time a new volcano appeared on the volcano-strewn Jupiter moon Io.

The two pictures to the right show the surface change on Io during those 27 years.

Analysis of the first close-up images of Io in over 25 years, captured by the JunoCam instrument on NASA’s Juno mission, reveal the emergence of a fresh volcano with multiple lava flows and volcanic deposits covering an area about 180 kilometres by 180 kilometres. The findings have been presented at the Europlanet Science Congress (EPSC) in Berlin this week.

The new volcano is located just south of Io’s equator. Although Io is covered with active volcanoes, images taken during NASA’s Galileo mission in 1997 did not see a volcano is in this particular region – just a featureless surface.

If anything, it has been somewhat surprising how little change the new Juno images have found on Io’s surface, considering its intensely active volcanic geology, with volcano plumes from eruptions captured in images repeatedly. Some volcanoes have shown change, but new features such as this new volcano have not previously been identified.

At the same time, the amount of high resolution imagery of the planet’s surface has been somewhat limited. Galileo sent back far fewer pictures than planned because its main antenna never deployed, and Juno had only a handful of close fly-bys. It will take a mission dedicated to studying Io to better map its violent surface.

Engineers successfully switch thrusters on Voyager-1

The Voyager missions
The routes the Voyager spacecraft have
taken since launch.

Because of an increasing number of clogged thrusters on the almost half-century old Voyager-1 spacecraft, now flying just beyond the heliosphere of the solar system, engineers needed to switch thrusters recently, and successfully did so in a complex dance of engineering.

They had to switch from one thruster, in which a fuel line has become increasingly clogged in the last few years due to age, to an another thruster in a different system. The switch however required other careful preparations, since Voyager-1’s nuclear power supply has dropped to a point where they have been forced to shut down almost all operations. Thus, the thrusters are not getting heated as they once were, and turning on the replacement thruster in this condition could damage it.
» Read more

The reasons why Mars two polar caps are so different

The Martian north pole
The Martian north pole.

The Martian south pole
The Martian south pole.

Elevation scale bar
What the colors mean in terms of elevation

A new paper, in review for the past year, has now been published describing the differences between the north and south poles of Mars, the most fundamental of which involve the planet’s orbit and the different elevations of the two poles, with the south pole three to six miles higher in altitude (as indicated by the colors on the maps to the right).

The cumulative data has allowed the researchers to explain why — when the thin winter cap of dry ice sublimates away in the spring — the process at the south pole results in spiderlike features that get enhanced from year to year, but in the north pole that sublimation process produces no such permanent features.

In both cases, the spring sunlight passes through the clear winter mantle of dry ice to heat its base. The sublimated trapped CO2 gas builds up, until the pressure causes the mantle to crack at weak spots. In the south that trapped gas flows uphill each spring along the same paths, carving the riverlike tributaries dubbed unofficially as “spiders” and officially as “araneiform terrain.”

Geophysicist Hugh Kieffer described that process in 2006. A few years later, [Candice] Hansen [the new paper’s lead author] followed up with her own model for the north polar cap, which also displays fans in the spring.

She found that the same phenomena occur in the north, but rather than relatively flat terrain, these processes play out across sand dunes. “When the Sun comes up and begins to sublimate the bottom of the ice layer, there are three weak spots – one at the crest of the dune, one at the bottom of the dune where it meets the surface and then the ice itself can crack along the slope,” Hansen said. “No araneiform terrain has been detected in the north because although shallow furrows develop, the wind smooths the sand on the dunes.”

There is also a lot more dust in the north, including a giant sea of dunes that circles the polar cap. In addition, the northern winter is shorter due to the planet’s orbit, and takes place during the annual dust storm season, causing there to be more dust concentrated within the northern ice. All of these factors make the the dunes and general surface in the north is more easily smoothed by the wind.

A cloud atlas of Mars

Different clouds on Mars interacting
Click for original image.

Using data obtained from one of the instruments on the European Space Agency’s (ESA) Mars Express orbiter, scientists have now published an atlas of the clouds of Mars and made it available to the public.

The picture to the right, cropped, reduced, and sharpened to post here, is just one example of the images in the atlas. From the caption:

This image displays two atmospheric phenomena: the white curved lines are gravity wave clouds, while the brown areas are dust lifted from the ground by wind. The colour shift visible in the dust lifting event might be indicative of very fast winds, a phenomenon currently under investigation by other members of the team.

The atlas contains more than 300 images of various Martian cloud formations, from the one to the right to images of cirrus clouds on the top of Olympus Mons, Mars’ largest volcano. You can download it here (the file is a very large spreadsheet).

1 6 7 8 9 10 274