A classic spiral galaxy

A classic spiral galaxy
Click for original image.

Monday is always a slow news day in space, so we start the day with a cool image. The picture to the right, reduced and sharpened to post here, was taken by the Hubble Space Telescope of a spiral galaxy about 100 million light years from Earth.

That NGC 3430 is such a fine example of a galactic spiral may be why it ended up as part of the sample that Edwin Hubble used to define his classification of galaxies. Namesake of the Hubble Space Telescope, in 1926 he authored a paper which classified some four hundred galaxies by their appearance — as either spiral, barred spiral, lenticular, elliptical or irregular. This straightforward typology proved immensely influential, and the modern, more detailed schemes that astronomers use today are still based on it. NGC 3430 itself is an SAc galaxy, a spiral lacking a central bar with open, clearly-defined arms.

The bright blue indicates areas of star formation, while the reddish streaks indicates dust. The orange/reddish dots above and below the galaxy are distant background galaxies whose light has been shifted to the red because they appear to be moving away from us due to the expansion rate of the universe.

ESA’s Juice probe to Jupiter prepares for first Earth+Moon slingshot fly-by

Graphic showing Juice's upcoming duel fly-by
Graphic showing Juice’s upcoming duel fly-by.
Click for original image.

The European Space Agency’s (ESA) first mission to Jupiter, dubbed Juice (Jupiter Icy Moons Explorer) is about to do the first ever back-to-back fly-bys of the Moon and then the Earth immediately afterward in order to slingshot it forward on its long journey to the gas giant.

The graphic to the right, cropped and reduced to post here, shows the plan. Juice will first fly past the Moon, shifting its path slightly, and then zip past the Earth one day later, its trajectory then under-going a much larger change.

The lunar-Earth flyby will see Juice pass just 700 km [435 miles] from the Moon’s surface at 23:16 CEST on 19 August and 6807 km [4230 miles] from Earth’s surface almost exactly 24 hours later at 23:57 CEST on 20 August.

Using the gravity of the Moon to slightly bend Juice’s trajectory first will improve the effectiveness of the much larger gravity assist at Earth. However, the dual flyby requires extraordinarily precise navigation and timing, as even minor deviations could send Juice in the wrong direction.

The engineering teams have already been doing simulations to make sure they get this complex maneuver right. If all goes right, the spacecraft will then do flybys of Venus in August 2025, Earth in September 2026, and Earth again in January 2029, arriving in Jupiter orbit in July 2031.

Rocks broken by Curiosity’s wheels contain the first pure sulfur crystals found on Mars

Curiosity's robot arm about to take a close look at the ground
Click for original image.

Close-up of rocks on Mars
Click for original image.

When Curiosity completed a drive on May 30, 2024, subsequent images from the rover revealed that the wheels had broken apart some small rocks, revealing very bright yellow materials not normally seen on the planet.

I posted those images on June 7, 2024 — noting that such colorful and crystal-like surface features have been rarely seen by Curiosity — and post them again now, with the top picture showing the broken rocks, labeled as “target rocks”, just after the robot arm had rotated up and away from a close inspection and imaging of those rocks. The picture to the right is a close-up taken by Curiosity’s Mars Hand Lens Imager (MAHLI), located at the end of the rover’s robot arm and designed to get close-up high resolution images of the ground that the arm is exploring. Everything in this image is tiny, in the millimeters in scale.

The science team yesterday confirmed that those unusual rocks are the first pure crystals of sulfur found on the red planet.

Since October 2023, the rover has been exploring a region of Mars rich with sulfates, a kind of salt that contains sulfur and forms as water evaporates. But where past detections have been of sulfur-based minerals — in other words, a mix of sulfur and other materials — the rock Curiosity recently cracked open is made of elemental, or pure, sulfur. It isn’t clear what relationship, if any, the elemental sulfur has to other sulfur-based minerals in the area.

While people associate sulfur with the odor from rotten eggs (the result of hydrogen sulfide gas), elemental sulfur is odorless. It forms in only a narrow range of conditions that scientists haven’t associated with the history of this location. And Curiosity found a lot of it — an entire field of bright rocks that look similar to the one the rover crushed.

Analysis of samples taken from drilling into a nearby much more structurally solid rock is presently on-going. As for theories explaining the presence of this pure sulfur, those are being worked on as well.

Scientists: Biden has infused DEI and racial quotas throughout the entire federal science bureaucracy

Joe Biden, allied with Hamas
Joe Biden, like the KKK in love with racist quotas

A new research paper just completed by a international group of scientists details at length how the policies of critical race theory and its “diversity, equity, and inclusion (DEI)” philosophy has been infused deeply into all levels of the entire federal science bureaucracy, influencing grant awards and hiring at the National Science Foundation (NSF), the National Institute of Health (NIH), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) in ways that warp science and research and make good research impossible..

You can read the paper here [pdf]. From the press release:

The paper exposes how DEI has spread much further and more deeply into core scientific disciplines than most people, including many scientists, realize. This has happened, in large part, by presidential executive order (specifically, EO 13985 and EO 14091), implemented through the budget approval process.

The two executive orders listed were issued by President Biden in 2021 and 2023 respectively, with the first issued on his very first day in office. If you have the patience, it worth reading both, since they outline in great detail the goals of this administration to favor the hiring and promotion of “underserved communities,” which the first order lists as follows:
» Read more

Curiosity looks up Gediz Vallis as it starts its journey out

Curiosity panorama looking south on July 16, 2024Curiosity panorama looking south on July 16, 2024. Click for high resolution. Go here, here, here, and here
for original images.

Overview map
Click for interactive map.

Even as the Curiosity science team is beginning the rover’s journey out of the giant Martian slot canyon Gediz Vallis, they have on July 16, 2024 used its high resolution camera to gather a new mosaic of the surrounding terrain. I have used four of those images (available here, here, here, and here) to create a panorama, as shown above, focusing on the view looking south up into Gediz Vallis. Make sure you click on the image to see the full resolution version.

The overview map to the right provides the context. The blue dot marks Curiousity’s present position. The yellow lines indicate the approximate area covered by the panorama. The white dotted line indicates Curiosity’s actual traveled route, while the red dotted line the planned route.

The peak of Mount Sharp is directly ahead in this panorama, out of sight and about 26 miles away and 16,000 feet higher up. To get a sense of how far away that remains, note that Curiosity in its dozen years of exploration on Mars has so far traveled just under 20 miles and climbed about 2,500 feet.

The plan is to back track downhill and circle around the nose of the western wall of Gediz Vallis and head south in a parallel canyon that is believed to provide easier traveling for Curiosity’s damaged wheels.

Researchers discover an anti-aging drug that extends the lives of rats 25%

Researchers have discovered that by blocking the increase of a certain protein within the body, they can not only extend the lives of rats by about 25%, the rats overall health in old age was improved significantly.

You can read the original paper here and the press release from the researchers here. From that press release:

After establishing IL11’s role in aging, the team demonstrated that by applying this anti-IL11 therapy in the same preclinical model, metabolism was improved. The mice shifted from generating white fat to beneficial brown fat. Brown fat breaks down blood sugar and fat molecules to help maintain body temperature and burn calories. The researchers also observed improved muscle function and overall better health in their study, as well as an increased lifespan by up to 5 per cent in both sexes.

Unlike other drugs known to inhibit specific pathways involved in aging, such as metformin and rapamycin, anti-IL11 therapy blocks multiple major signaling mechanisms that become dysfunctional with age, offering protection against cardio-metabolic diseases, age-related loss of muscle mass and strength as well as frailty. In addition to these externally observable changes, anti-IL11 therapy also reduced the rate of telomere shortening and preserved mitochondria’s health and ability to generate energy.

According the paper, this drug is now in early-stage clinical trials for fibrotic lung disease, but its benefits — as seen in these rat experiments — could turn out to be far greater, across the board.

Astronomers discover an exoplanet with the most eccentric orbit so far found

Using the TESS space telescope, astronomers have discovered a gas giant exoplanet with the most eccentric orbit so far found, circling a star about 1,100 light years away.

On Jan. 12, 2020, TESS picked up a possible transit of the star TIC 241249530. Gupta and his colleagues at Penn State determined that the transit was consistent with a Jupiter-sized planet crossing in front of the star. They then acquired measurements from other observatories of the star’s radial velocity, which estimates a star’s wobble, or the degree to which it moves back and forth, in response to other nearby objects that might gravitationally tug on the star. Those measurements confirmed that a Jupiter-sized planet was orbiting the star and that its orbit was highly eccentric, bringing the planet extremely close to the star before flinging it far out.

Prior to this detection, astronomers had known of only one other planet, HD 80606 b, that was thought to be an early hot Jupiter. That planet, discovered in 2001, held the record for having the highest eccentricity, until now.

The exoplanet’s orbit is presently 167 days long, at its closest stellar approach dipping 10 times closer to its star than Mercury is from the Sun, and at its farthest point zipping just beyond Earth’s distance.

Computer simulations suggest that in a billion years this orbit will decay into a more circular orbit close to the star, turning this gas giant into a hot Jupiter roasted by its star continually.

Europe’s Gaia space telescope in trouble

Launched in 2013 and now functioning more than six years after the completion of its primary mission to measure precisely the distances to over a billion stars, the European Space Agency’s Gaia space telescope has experienced several major technical issues this spring related to a micrometeorite hit and a failure of the electronics of one of its CCDs.

The micrometeorite hit occurred in April.

The impact created a little gap that allowed stray sunlight – around one billionth of the intensity of direct sunlight felt on Earth – to occasionally disrupt Gaia’s very sensitive sensors. Gaia’s engineers were in the middle of dealing with this issue when they were faced with another problem.

The spacecraft’s ‘billion-pixel camera’ relies on a series of 106 charge coupled devices (CCDs) – sensors that convert light into electrical signals. In May, the electronics controlling one of these CCDs failed – Gaia’s first CCD issue in more than 10 years in space. Each sensor has a different role, and the affected sensor was vital for Gaia’s ability to confirm the detection of stars. Without this sensor to validate its observations, Gaia began to register thousands of false detections.

The cause of the electronics failure remains unsolved, though it is believed related to the major solar storm that swept by at about the same time.

As a result of these issues, the telescope’s data stream will be significantly reduced. How long it will remain in operation remains unclear. At some point the cost will outweigh the amount of data obtained.

A pit on the Moon reveals some really bad journalism

Mare Tranquilitatis Pit

At the start of this week three different major news organizations posted articles about a so-called “discovery” of a cave on the Moon that could sustain a human colony.

What all three articles [now updated with a fourth] demonstrated however was how little research was done by the journalists who wrote the articles, as well as the lack of any editorial supervision to make sure the news organization publishing the stories didn’t look stupid.

Here are the articles in question:

The original paper that these stories are based on can be read here. It didn’t take me more than five seconds to immediately recognize that the pit in question, dubbed the Mare Tranquillitatis pit, has been known about for years. I in fact wrote about it as long ago as 2011, when researchers used Lunar Reconnaissance Orbiter (LRO) to take oblique images of it. One such image is to the right, cropped and enhanced to post here.

The new research has simply used the radar instrument on LRO to take oblique radar data to see if there are any cave passages at its base, and found that there could be voids leading off from the pit as much as “tens of meters” long, or about 100 feet or so.

This is good research, but the finding is hardly significant. Numerous other studies have suggested the same results, all tantalizing but entirely unconfirmed until we can send some probe (manned or manned) into these pits. In addition, hundreds of similar lunar pits have been documented for more than a decade.

Yet the first two articles above treated this cave as God’s gift to humanity, as if it was the first such pit found on the Moon that could hold a human base, while the third provided so little information about the background of this work that the article was essentially worthless.

I write this as a warning to my readers. Mainstream news sources no longer do the proper due diligence that should be expected from writers and editors. If you want good information, you need to go to sources that specialize in the subject (such this website), and you must go to more than one in order to understand the subject entirely.

Layered Martian mesa inside crater

Layered mesa on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and enhanced to post here, was taken on May 14, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as a “layered butte inside small crater.”

The crater is only about 1.8 miles across, and is only a couple of hundred feet deep, at the most. Because this crater sits on a large slope rising to the southwest, the mesa’s peak is actually about thirty feet higher than the crater’s northern rim, but is still below the southern rim by about 70 feet.

A close look at the mesa’s slopes suggests about a dozen obvious layers, though based on data from the rovers Curiosity and Perseverance, those obvious layers are probably divided into many hundreds of thinner layers in between.

What caused these layers? And how did such a small crater get such a relatively large mesa in its center? As always, the overview map provides some clues, but as always it does not provide a definitive answer.
» Read more

Europe targets 2031 for the first mission of its own lunar lander

The European Space Agency (ESA) has approved a target date of 2031 for the first mission of its own unmanned lunar lander, dubbed Argonaut, and launched on the most powerful version of the Ariane-6.

On 16 July, the agency published a call for Argonaut Mission 1 Phase A/B1 development aimed at demonstrating the technical and programmatic feasibility of the Argonaut mission concept. The call included a proposed launch date of 2031 for the first Argonaut mission to the Moon.

The Argonaut lunar lander will be launched aboard an Ariane 64 rocket. Once operational, ESA envisions it being used for a wide variety of applications, from cargo logistics to acting as an in-situ resource utilization plant. The agency has already completed pre-phase A studies for what it calls the European Charging Station for the Moon. This system would be launched aboard an Argonaut lunar lander and would essentially act as a gas station on the Moon that would be used to support crewed missions on the surface of the Moon.

As I’ve noted previously, ESA routinely sets a glacial pace on all its government-run projects. Do not expect this government lander to fly on this schedule. More likely by 2031 there will be many cheaper and available options from the private sector, and European companies wanting to put payloads down on the Moon will turn to those, especially because Argonaut is apparently being forced to use the expensive expendable Ariane-6 rocket. The cost for going on Argonaut is simply going to be too high.

Martian taffy terrain

Martian taffy terrain
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on April 11, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a typical area of what scientists have labeled “taffy terrain,” a landscape made up of strangely twisted bands that look like someone was pulling the ground repeatedly, just like taffy.

Based on the lower crater count found here, taffy terrain is thought to be relative young, formed around three billion years ago. While the exact formation process is not yet understood, scientists theorize that it was caused by some type of “viscous fluid” that settled into localized depressions.

The location is 40 degrees south latitude, so it is entirely possible we are seeing some form of glacial material, ice in these low spots that has no place to go but is warped over time by the same kind of tidal and rotational planetary effects that cause waves and tides in the oceans on Earth.
» Read more

A blob in space

A blob in space
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope of the dwarf galaxy NGC 5238.

Its unexciting, blob-like appearance, resembling more an oversized star cluster than a galaxy, belies a complicated structure which has been the subject of much research by astronomers. Here, the NASA/ESA Hubble Space Telescope is able to pick out the galaxy’s countless stars, as well as its associated globular clusters — the glowing spots both inside and around the galaxy that are swarmed by yet more stars.

NGC 5238 is theorised to have recently — here meaning no more than a billion years ago! — had a close encounter with another galaxy. The evidence for this is the tidal distortions of NGC 5238’s shape, the kind produced by two galaxies pulling on each other as they interact. There’s no nearby galaxy which could have caused this disturbance, so the hypothesis is that the culprit is a smaller satellite galaxy that was devoured by NGC 5238.

Astronomers are hoping to use this image to detect the two different populations of stars within this blob that come from those once interacting galaxies.

Webb infrared spectroscopy detects differences between morning and evening on tidally-locked exoplanet

Webb spectroscopic data
Click for original image.

Astronomers using Webb Space Telescope’s infrared spectroscopy have now detected distinct differences in the morning and evening atmosphere of a tidally-locked gas giant exoplanet.

The graph, cropped, reduced, sharpened, annotated to post here, shows the differences. From the caption:

Researchers using NASA’s James Webb Space Telescope have finally confirmed what models have previously predicted: An exoplanet has differences between its eternal morning and eternal evening atmosphere. WASP-39 b, a giant planet with a diameter 1.3 times greater than Jupiter, but similar mass to Saturn that orbits a star about 700 light-years away from Earth, is tidally locked to its parent star. This means it has a constant dayside and a constant nightside—one side of the planet is always exposed to its star, while the other is always shrouded in darkness.

Using Webb’s NIRSpec (Near-Infrared Spectrograph), astronomers confirmed a temperature difference between the eternal morning and eternal evening on WASP-39 b, with the evening appearing hotter by roughly 300 Fahrenheit degrees (about 200 Celsius degrees). They also found evidence for different cloud cover, with the forever morning portion of the planet being likely cloudier than the evening.

The actual temperatures of each terminator are quite hot, approximately 1,150 and 1450 degrees Fahrenheit respectively. Computer modeling suggests “the prevailing winds are likely moving from the night side across the morning terminator, around the dayside, across the evening terminator and then around the nightside,” with wind speeds thousands of miles per hour.

A penguin and egg, as seen by Webb and Hubble

A penquin and egg compared
Click for original images.

Cool image time! The two pictures to the right, cropped, reduced, and sharpened to post here, were taken by both the Webb and Hubble space telescopes of the same unusual galactic object, officially called Arp 142 but nicknamed by astronomers the Penquin and the Egg.

Both of these objects are galaxies. The Penquin’s strange shape is caused by the presence of the Egg, which is an elliptical galaxy that is twisting and distorting the Penquin’s original spiral galaxy whirlpool as it flies past. From the caption:

Like all spiral galaxies, the Penguin is still very rich in gas and dust. The galaxies’ “dance” gravitationally pulled on the Penguin’s thinner areas of gas and dust, causing them to crash in waves and form stars. Look for those areas in two places: what looks like a fish in its “beak” and the “feathers” in its “tail.”

Surrounding these newer stars is smoke-like material that includes carbon-containing molecules, known as polycyclic aromatic hydrocarbons, which Webb is exceptional at detecting. Dust, seen as fainter, deeper orange arcs also swoops from its beak to tail feathers.

In contrast, the Egg’s compact shape remains largely unchanged. As an elliptical galaxy, it is filled with aging stars, and has a lot less gas and dust that can be pulled away to form new stars. If both were spiral galaxies, each would end the first “twist” with new star formation and twirling curls, known as tidal tails.

Another reason for the Egg’s undisturbed appearance: These galaxies have approximately the same mass or heft, which is why the smaller-looking elliptical wasn’t consumed or distorted by the Penguin.

The differences between the two pictures also reveal many aspects of the Penguin. The Hubble optical image at the top captures the lanes of dust in the foreground, while the Webb infrared image at the bottom looks right through this dust to better trace the now-distorted spiral arms where star formation is presently taking place.

Astronomers estimate that these two galaxies are about 100,000 light years apart, comparable to the width of the Milky Way. In comparison, the Andromeda galaxy is around 2.5 million light years away, and will not begin interacting with our galaxy in this manner for an estimated four billion years. The Egg and Penguin however began their warped dance about 50 million years ago.

Europa Clipper mission threatened by faulty transistors

Engineers have learned that transistors installed on NASA’s Europa Clipper mission were not built to the right specifications and could fail in the harsh environment surrounding Jupiter.

The issue with the transistors came to light in May when the mission team was advised that similar parts were failing at lower radiation doses than expected. In June 2024, an industry alert was sent out to notify users of this issue. The manufacturer is working with the mission team to support ongoing radiation test and analysis efforts in order to better understand the risk of using these parts on the Europa Clipper spacecraft.

Testing data obtained so far indicates some transistors are likely to fail in the high-radiation environment near Jupiter and its moon Europa because the parts are not as radiation resistant as expected. The team is working to determine how many transistors may be susceptible and how they will perform in-flight. NASA is evaluating options for maximizing the transistors’ longevity in the Jupiter system. A preliminary analysis is expected to be complete in late July.

This issue could be disaster for the mission, which has a launch window that opens on October 10, 2024. If it is impossible to replace the bad transistors, NASA will be faced with two choices, neither great. It could launch regardless and hope for the best. It could delay the mission to fix the problem, which might involve a delay of years waiting for a new launch window.

This story appears to illustrate once again the decline in quality control that appears to be happening across much of American industry. The technology for building radiation-hardened equipment has been standard for decades. For a company to deliver equipment below standard now suggests incompetence or fraud, neither of which speaks well for it and the entire industry.

Archeologists find the musket balls fired in the first shots of the Revolutionary War

Archeologists digging at Concord discover what they think are five musket balls fired in the first shots of the Revolutionary War.

Archeologists believe five musket balls unearthed in Concord’s Minute Man National Historical Park were fired by colonial militia in the famed battle moments that sparked the Revolutionary War. The 250-year-old musket balls were discovered in an area inside the park where historians believe British troops faced colonial forces at the North Bridge.

Analysis of the artifacts indicates they were fired by colonial militia members from across the river, and not dropped from British weapons when troops were reloading.

Since the Minute Men fired over a period of time, routing the British troops, there is no way to know if these musket balls were the first fired, or among the later rounds. Nonetheless, these artifacts are an actual piece of a moment of history that literally changed all of human history.

A ridge that runs right over a Martian mesa

A dike in a mesa
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on April 5, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I have cropped it to focus on the geological feature that likely attracted the interest of the scientists who requested this photo, the mesa that has a ridgeline running over it as if the mesa was not even there.

The mesa is about 80 feet high on its west side, but on its east the ground continues to drop away more than 500 feet as you move 2.5 miles to the east. Based on how the MRO science team interprets the colors [pdf] in the color strip, the orange areas are likely dust while the greenish surface suggests coarser sand and boulders. This conclusion is reinforced if you look at the parallel dunes south of the mesa. The dunes are yellow-orange (dust) while the ground between is yellow-green (sand), exactly what you expect with the larger coarser material settling in lower elevations.

The overview map provides the context, which might help explain the ridgeline.
» Read more

Reanalysis of Apollo seismic data finds 22,000 previously undetected quakes

By taking a new look at the data from the seismometers placed on the lunar surface by the Apollo missions during the 1970s, Keisuke Onodera of the University of Tokyo was able to find approximately 22,000 previously undetected quakes, almost tripling the rate of seismic activity on the Moon. From the paper’s abstract:

In the 1970s, two types of seismometers were installed on the nearside of the Moon. One type is called the Long-Period (LP) seismometer, which is sensitive below 1.5 Hz. The other is called the Short-Period (SP) seismometer, whose sensitivity is high around 2–10 Hz. So far, more than 13,000 seismic events have been identified through analyzing the LP data, which allowed us to investigate lunar seismicity and its internal structure.

On the other hand, most of the SP data have remained unanalyzed because they include numerous artifacts. This fact leads to the hypotheses that (a) we have missed lots of high-frequency seismic events and (b) lunar seismicity could be underestimated.

To verify these ideas, I conducted an analysis of the SP data. … I discovered 22,000 new seismic events, including thermal moonquakes, impact-induced events, and shallow moonquakes. Among these, I focused on analyzing shallow moonquakes—tectonic-related quakes. Consequently, it turned out that there were 2.6 times more tectonic events than considered before. Furthermore, additional detections of shallow moonquakes enabled me to see the regionality in seismicity. Comparing three landing sites (Apollo 14, 15, and 16), I found that the Apollo 15 site was more seismically active than others. These findings can change the conventional views of lunar seismicity.

The data also suggests the northern hemisphere is more active than the southern.

Astronomers: A black hole weighing 8,200 solar masses likely sits at the center of the Milky Ways’ largest globular cluster

Omega Centauri
Click for original image.

By analyzing the motion of seven fast moving stars at the center of the globular cluster Omega Centauri, the largest such cluster in the Milky Way and located about 18,000 light years away, astronomers now think they have detected evidence of an intermediate-sized black hole weight at least 8,200 solar masses.

You can read the published paper here. [pdf] The picture of Omega Centauri to the right, reduced and sharpened to post here, was created from more than 500 images taken over two decades by the Hubble Space Telescope. The inset, figure 1b of the paper, shows those seven fast-moving stars in pink, each having an arrow indicating the distance they are expected to move in a 100 years. The dashed circle marks the region where the black hole is believed to reside, with the dark blue cross in its upper left quadrant the most likely position of the black hole based on calculations.

From the caption for the larger Omega Centauri Hubble image:

Omega Centauri is visible from Earth with the naked eye and is one of the favourite celestial objects for stargazers in the southern hemisphere. Although the cluster is 17 700 light-years away, lying just above the plane of the Milky Way, it appears almost as large as the full Moon when seen from a dark rural area.

Though such intermediate-sized black holes have been theorized as existing inside globular clusters, I think this is the first real evidence of one.

Radar movie produced of 500-foot-wide asteroid

Movie of asteroid

Cool image time! Astronomers have created a movie of radar images of a 500-foot-wide asteroid, dubbed 2024 MK, as it flew past the Earth on June 30, 2024 only 184,000 miles away, using two different radar dishes that are part of NASA’s Deep Space Network normally used for communications with planetary missions.

That movie is to the right.

The Deep Space Network’s 230-foot (70-meter) Goldstone Solar System Radar, called Deep Space Station 14 (or DSS-14), was used to transmit radio frequency signals to the asteroid, and the 114-foot (34-meter) DSS-13 received the reflected signals. The result of this “bistatic” radar observation is a detailed image of the asteroid’s surface, revealing concavities, ridges, and boulders about 30 feet (10 meters) wide.

This is not the first time an asteroid has been observed in this manner using radar, but it illustrates how the technique is becoming increasingly sophisticated, capable of producing images of surprising resolution.

Webb: An exoplanet in the habitable zone with a possible nitrogen/CO2 atmosphere and water ocean

Using the Webb Space Telescope, astronomers have obtained new transiting spectroscopy of a “mini-Neptune-sized” exoplanet that circles in the habitable zone a red dwarf star about 48 light years away and have concluded that it appears to have a nitrogen/carbon dioxide atmosphere and even a water ocean.

While it is still only a tentative result, the presence of a nitrogen-rich atmosphere on LHS 1140 b would suggest the planet has retained a substantial atmosphere, creating conditions that might support liquid water. This discovery favors the water-world/snowball scenario as the most plausible.

Current models indicate that if LHS 1140 b has an Earth-like atmosphere, it would be a snowball planet with a vast “bull’s-eye” ocean measuring about 4,000 kilometers in diameter, equivalent to half the surface area of the Atlantic Ocean. The surface temperature at the centre of this alien ocean could even be a comfortable 20 degrees Celsius [68 degrees Fahrenheit]. [emphasis mine]

You can read the preprint of the paper here [pdf].

The highlighted phrase must be noted. These results contain a lot of uncertainties and assumptions. However, the data is tantalizing, to say the least, and justify more observations using Webb. The scientists argue in their paper that because there are only about eight transits of the exoplanet per year — requiring several years of observations to pin down this data more precisely — and because Webb has a limited life expectancy as an infrared observatory, this star should get observational priority.

A jumble of blocks in the middle of a Martian flood lava plain

A jumble of blocks on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on March 18, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO).

This is one of what I like to call “What the heck?” images. The broken up blocks resemble ice floes on the edge of the Arctic ice cap that have broken off and have begun floating away.

The problem with this theory is many fold. First, this is on Mars and not on Earth. Second the “sea” these blocks are supposedly “floating” in is actual solid lava. There is no water or ice here, on the surface or even underground. This is in the dry tropics of Mars, where little or no near-surface ice has so far been detected.

The overview map below provides some context, and possibly an explanation.
» Read more

Webb: Hot Jupiter exoplanet has atmosphere with the smell of rotten eggs

Using spectroscopy from the infrared Webb Space Telescope, astronomers have measured some of the molecules in exoplanet HD 189733 b, one of the first hot Jupiter exoplanets ever discovered, and found it has an atmosphere rich in hydrogen sulfide, which emits a smell like rotten eggs.

In addition to detecting hydrogen sulfide, the team analyzed the planet’s oxygen and carbon content, pinpointing water, carbon dioxide and carbon monoxide as major components of the planetary atmosphere. Measuring these heavy elements allows astronomers to compare the composition of exoplanets to that of gas giants in our solar system like Jupiter and Uranus.

The exoplanet, about 64 light years away, has an orbit lasting only about two Earth days, with atmospheric temperatures has hot as 1,700 degrees Fahrenheit.

Study: Mortality rates higher for those who got the COVID jab

According to a new study [pdf] of death rates from all causes in a province in Italy, mortality was greater for those who got the jab versus those who did not.

From the paper’s conclusion:

We found all-cause death risks to be even higher for those vaccinated with one and two doses compared to the unvaccinated and that the booster doses were ineffective. We also found a slight but statistically significant loss of life expectancy for those vaccinated with 2 or 3/4 doses.

As noted in the second link above,

“The main point of the paper is that COVID-19 vaccination did not ‘save lives’ as so many in Washington have proclaimed without evidence,” commented epidemiologist and cardiologist Dr. Peter McCullough on his Substack Courageous Discourse. “The trend was for multiple vaccine doses to increase COVID-19 mortality and there was an important signal for increased all-cause death with one or two doses.”

We should therefore not be surprised that several thousand doctors and scientists have signed a declaration called the Hope Accord, calling for all governments worldwide to ban COVID mRNA shots.
» Read more

A drainage gully on Mars?

A drainage gully on Mars?
Click for original image.

Overview map

Cool image time! The picture above, cropped, reduced, and sharpened to post here, was taken on April 18, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a gully that cuts down from the western rim of a 21-mile-wide unnamed crater in the southern cratered highlands of Mars.

The small rectangle on the overview map to the right marks the location, with the inset providing a close-up of this crater, with the white bar indicating the area covered by the photo above. The overall elevation loss from the rim on the left down to the crater floor on the right is about 3,800 feet.

The first high resolution picture of this gully was taken in 2016, with subsequent pictures taken in 2021 and 2022. In comparing the newest picture above with the 2016 photo I can detect no changes, but I am not looking a the highest resolution available. In addition, both of these pictures were taken during the Martian spring. The 2021 and 2022 pictures were taken during the Martian summer, and in both the north-facing wall where the gully is beginning to narrow seemed brighter.

It is likely the researchers are looking to see if any frost — either ice or dry ice — appeared during the winter and then sublimated away in the summer. Such a change could cause some of the erosion that produced this gully.

Centrifuge research on ISS suggests some artificial gravity can mitigate negative effects of weightlessness

Two of the three centrifuges on ISS

When I appeared on the Space Show last month I stated something about centrifuge research that was wrong. I had been under the false impression that no such research had yet been done on ISS, and our only data came from one experiment performed by the Soviets on one of their early space stations decades ago.

Charles Lurio, who writes the very respected Lurio Report newsletter on space matters, called me afterward to correct me, and then followed up by sending me a link to a paper describing research on ISS in the past few years using rats inside three different small centrifuges (two of which are shown in the picture to the right). For this information I thank him.

You can download the paper here [pdf]. The research is significant because it suggests that the medical problems of weightlessness can be solved by creating an artificial gravity far less the Earth’s 1g environment. From the paper’s abstract:
» Read more

Geology on Mars is not always what you think it is

The Martian tropics versus the Martian south pole
For the original images go here and here.

Today’s cool image is actually a comparison of two different high resolution images from Mars Reconnaissance Orbiter (MRO), both of which illustrate why it is very dangerous to come to any conclusions about such images without knowing a lot more about them.

The top image to the right, cropped to post here, was a terrain sample image taken on March 30, 2024. Such images are usually taken not to complete any particular research project, but are taken to fill a gap in the schedule in order to maintain the camera’s proper temperature. When the camera team has to do this, they attempt to pick a spot that might have some geological interest. Sometimes they get something surprising. Often however the features in the picture are boring.

In this case they spotted a place where the ground appears appears to be eroding away in a random pattern.

The bottom image, cropped, reduced, and enhanced to post here, was taken on March 24, 2024 and was part of planned research. It shows a section of the Martian south ice cap, specifically the area where scientists believe there is a residual permanent small cap of dry ice on top of a thick underlying water ice cap.

Like the top image, the features here suggest some sort of erosion process eating away randomly at the ground’s upper layers.

The two images illustrate the difficulty of interpreting orbital images. At first glance the geological features of both appear very similar. Yet the top image is located in the very dry equatorial regions of Mars, and in fact is inside the Medusae Fossae Formation, the largest field of volcanic ash on the red planet. The layers here are likely ash, and the erosion that carved out the hollows likely came from wind. If there ever was near-surface ice at this location, it was many eons ago.

The bottom image however likely shows the sublimation process that is slowly eating away at the residual dry ice cap at the south pole. The Martian north pole does not have residual permanent cap of frozen carbon dioxide, and the reasons why the two caps are different in this way are complex and not completely understood.

Both images show erosion that produces features that look similar. But the materials involved and the causes are completely different.

Remember this when you look at any orbital picture taken of Mars, or any other planetary object. Without the larger context (location, make-up, known history), any guess about the nature of the features there is nothing more than a wild guess, no different than throwing darts at a wall while wearing a blindfold.

Webb takes false-color infrared image of bi-polar protostar nebula

Hourglass nebula as seen in infrared by Webb
Click for original image.

Scientists using the Webb Space Telescope have now produced a new false-color infrared image of the bi-polar hour-glass-shaped protostar nebula dubbed L1527.

That image is to the left, created from data from Webb’s MIRI (Mid-Infrared Instrument) and cropped, reduced, and sharpened to post here. While it is not quite a pretty as a prevous Webb infrared image taken in 2022 by its NIRCam (Near-Infrared Camera), it provides new information about the make-up of materials within this nebula. From the caption:

The areas colored here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescopes’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.

Previous to Webb, this object had mostly been studied in 2012 using radio and submillimeter wavelengths (see the papers here and here), but those papers determined this is possibly the youngest known protostar, less than 100,000 years old.

Sixteen Nobel economists once again prove that our “expert” class is expert at nothing

Our modern intellectual class
Our modern intellectual class

Earlier this week a group of sixteen Nobel laureate economists issued a public letter endorsing Joe Biden’s economic agenda and claiming that a return of Donald Trump to the White House would lead to economic ruin.

“We believe that a second Trump term would have a negative impact on the U.S.’s economic standing in the world, and a destabilizing effect on the U.S.’s domestic economy,” the economists write in the letter. “Many Americans are concerned about inflation, which has come down remarkably fast. There is rightly a worry that Donald Trump will reignite this inflation, with his fiscally irresponsible budgets.”

You can read their letter here. It was signed by the following (the date of their Nobel award in parenthesis):

George A. Akerlof (2001), Sir Angus Deaton (2015), Claudia Goldin (2023), Sir Oliver Hart (2016), Eric S. Maskin (2007), Daniel L. McFadden (2000), Paul R. Milgrom (2020), Roger B. Myerson (2007), Edmund S. Phelps (2006), Paul M. Romer (2018), Alvin E. Roth (2012), William F. Sharpe (1990), Robert J. Shiller (2013), Christopher A. Sims (2011), Joseph Stiglitz (2001), and Robert B. Wilson (2020).

What is hilarious about their letter is how it exposes these so-called economic giants as partisan hacks. A dive into their campaign contributions finds that eleven are donors to Joe Biden or the Democrats, while the remaining five have all previously endorsed Biden publicly. Before the 2020 election two of these sixteen economists signed a similar letter, calling for Joe Biden’s election, claiming he would “…build an economy that works for all Americans.” In 2021 thirteen of these same economists then followed up with another letter, endorsing all of Biden’s spending proposals then before Congress (costing an expected $1.9 trillion).

A comparison between the claims in all three letters and what actually happened also reveals how little these economists know about economics. As noted at this City Journal article by James Piereson:
» Read more

1 6 7 8 9 10 271