Ryugu, like Bennu, appears to have rocks from other asteroids
Japanese scientists today announced that 21 rocks identified by Hayabusa-2 on the asteroid Ryugu have a composition that suggests they were formed on another asteroid.
Although Ryugu’s surface is uniformly dark [because it is a C-type asteroid], the scientists behind the new research found numerous boulders scattered across the asteroid that were 1.5 or more times brighter than their surroundings — that is, they reflected at least 50% more light than most of the rest of Ryugu. This contrast made the researchers suspect these boulders may have come from outside the asteroid.
By analyzing the spectrum of light reflected off 21 of these boulders, the scientists deduced they were made of minerals known as anhydrous silicates. Prior studies have suggested that such water-poor, silicon-rich rocks make up silicaceous or S-type asteroids, the most common kind of asteroid found in the inner main asteroid belt. The brightness of these boulders also matches the brightness of S-type asteroids.
This result compliments the result yesterday from scientists studying Bennu with OSIRIS-REx, and was in fact released at the same time. Both asteroids apparently contain material from other asteroids, suggesting that asteroids in their initial formation (as rubble piles) are routinely a mixture of material from many asteroids, thrown out during impacts and then recaptured.
Japanese scientists today announced that 21 rocks identified by Hayabusa-2 on the asteroid Ryugu have a composition that suggests they were formed on another asteroid.
Although Ryugu’s surface is uniformly dark [because it is a C-type asteroid], the scientists behind the new research found numerous boulders scattered across the asteroid that were 1.5 or more times brighter than their surroundings — that is, they reflected at least 50% more light than most of the rest of Ryugu. This contrast made the researchers suspect these boulders may have come from outside the asteroid.
By analyzing the spectrum of light reflected off 21 of these boulders, the scientists deduced they were made of minerals known as anhydrous silicates. Prior studies have suggested that such water-poor, silicon-rich rocks make up silicaceous or S-type asteroids, the most common kind of asteroid found in the inner main asteroid belt. The brightness of these boulders also matches the brightness of S-type asteroids.
This result compliments the result yesterday from scientists studying Bennu with OSIRIS-REx, and was in fact released at the same time. Both asteroids apparently contain material from other asteroids, suggesting that asteroids in their initial formation (as rubble piles) are routinely a mixture of material from many asteroids, thrown out during impacts and then recaptured.