Martian impact into lava crust?

Impact crater north of Pavonis Mons
Click for full image.

Cool image time! The photo on the right, cropped to post here, was taken by the high resolution camera on April 23, 2019. It shows a quite intriguing impact crater on the northern lava slopes of Pavonis Mons, the middle volcano in the chain of three gigantic volcanoes to the west of Valles Marineris.

What makes this image cool is what the impact did when it hit. Note the circular depression just outside the crater’s rim. In the southeast quadrant that ring also includes a number of additional parallel and concentric depressions. Beyond the depression ground appears mottled, almost like splashed mud.

What could have caused this circular depression? Our first clue comes from the crater’s location, as shown in the overview map below and to the right.
» Read more

Recent volcanism on the Moon

New data from Lunar Reconnaissance Orbiter suggests that lunar volcanism petered out slowly and occurred more recently that previously believed.

NASA’s Lunar Reconnaissance Orbiter (LRO) has provided researchers strong evidence the moon’s volcanic activity slowed gradually instead of stopping abruptly a billion years ago. Scores of distinctive rock deposits observed by LRO are estimated to be less than 100 million years old. This time period corresponds to Earth’s Cretaceous period, the heyday of dinosaurs. Some areas may be less than 50 million years old. Details of the study are published online in Sunday’s edition of Nature Geoscience. “This finding is the kind of science that is literally going to make geologists rewrite the textbooks about the moon,” said John Keller, LRO project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

In a way, this new conclusion is an example of science discovering the obvious. It seems to me quite unlikely that volcanic activity on the Moon would have “stopped abruptly” under any conditions. That’s not how these things work.

Changes in the levels of sulphur dioxide since Venus Express arrived in orbit around Venus in 2006 now suggest strongly that the spacecraft has detected volcanic activity on the planet.

Changes in the levels of sulphur dioxide (SO2) since Venus Express arrived in orbit around Venus in 2006 now suggest strongly that the spacecraft has detected volcanic activity on the planet.

The SPICAV data show that the concentration of SO2 above the main cloud deck increased slightly to about 1000 parts per billion by volume (ppbv) between 2006 and 2007, but then steadily decreased over the next five years, reaching only 100 ppbv by 2012. This is very reminiscent of a pattern observed by Pioneer Venus during the 1980s, the only other multi-year dataset of SO2 measurements.

One of best explanations for these changes is a volcanic eruption back in 2006, which would have inserted a great deal of SO2 into the upper atmosphere. Since then, ultraviolet radiation from the sun has steadily destroyed it.