Tag Archives: Comet 67P

Rosetta’s finale set for September 30

The Rosetta science team has set September 30th as the date when they will complete the spacecraft’s mission with a controlled descent onto Comet 67P/C-G’s surface.

Unlike in 2011, when Rosetta was put into a 31-month hibernation for the most distant part of its journey, this time it is riding alongside the comet. Comet 67P/Churyumov-Gerasimenko’s maximum distance from the Sun (over 850 million km) is more than Rosetta has ever journeyed before. The result is that there is not enough power at its most distant point to guarantee that Rosetta’s heaters would be able to keep it warm enough to survive.

Instead of risking a much longer hibernation that is unlikely to be survivable, and after consultation with Rosetta’s science team in 2014, it was decided that Rosetta would follow its lander Philae down onto the comet. The final hours of descent will enable Rosetta to make many once-in-a-lifetime measurements, including very-high-resolution imaging, boosting Rosetta’s science return with precious close-up data achievable only through such a unique conclusion. Communications will cease, however, once the orbiter reaches the surface, and its operations will then end.

The decision to end the mission this way makes great sense. I only question their decision to purposely end all communications upon impact. Though it is likely that communications will be lost anyway, wouldn’t it be better to try to get data back, like the scientists did with the American NEAR spacecraft when it touched down on the asteroid Eros at the end of its mission?

Drill baby drill!

Faced with a loss of power in Philae’s batteries due to a lack of sunlight, scientists plan to activate the lander’s drill today.

This action might push the lander off the surface again, but it also might move it into daylight. At the least it might get them some geological data.

If the reserve battery runs out of power and the spacecraft shuts down on Saturday, there is still a chance that it could come back to life at a later time, should Comet 67P/C-G’s position change enough to put its solar panels in daylight and it can charge its main battery.

Philae is go for separation, despite problem

Engineers have given a go for the separation of the Philae lander from Rosetta, despite the failure of a thruster to operate.

During checks on the lander’s health, it was discovered that the active descent system, which provides a thrust upwards to avoid rebound at the moment of touchdown, cannot be activated.

At touchdown, landing gear will absorb the forces of the landing while ice screws in each of the probe’s feet and a harpoon system will lock Philae to the surface. At the same time, the thruster on top of the lander is supposed to push it down to counteract the impulse of the harpoon imparted in the opposite direction. “The cold gas thruster on top of the lander does not appear to be working so we will have to rely fully on the harpoons at touchdown,”says Stephan Ulamec, Philae Lander Manager at the DLR German Aerospace Center. “We’ll need some luck not to land on a boulder or a steep slope.”

Update: Separation has occurred and signal reacquired from Philae. We wait for landing.

Rosetta’s comet landing sites

67P/C-G landing sites

The Rosetta science team has narrowed the choices for Philae landing sites on Comet 67P/C-G to five, three on the smaller lobe and two on the larger lobe.

The smaller lobe sites, being on the outside surface of the lobe, don’t provide as good a view of the rest of the comet, while the larger lobe sites are on its inside surface, looking down at the neck and the smaller lobe. In addition, the terrain for the larger lobe sites looks to me more interesting.

Being on the inside surface, however, the larger lobe sites are going to be more difficult to land on.

Today’s 67P image + the comet’s coma!

High Resolution of 67P, July 29, 2014

Today’s Comet 67P image from Rosetta above is actually an image from yesterday, refined and cleaned up by the spacecraft’s science team. The July 30 image can be found here, but it isn’t as interesting.

The image above was included in a press release that describes the effort by Rosetta to image the coma that surrounds this nucleus.