Chandra X-rays a giant hand in space

A cosmic hand
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Chandra X-ray Observatory, with data from the orbiting IXPE producing the lines that indicate the orientation of the magnetic field lines.

The image was part of research studying what the scientists call Pulsar Wind Nebulae (PWNe).

[E]arly-on when the new-born pulsar is still deep in its parent supernova remnant, or at late times after it has escaped to the relatively uniform interstellar medium, the pulsar wind is often uniform around the pulsar spin or velocity axis. In projection on the sky such structures have bilateral symmetry, that is, the two halves mirror each other. This makes them look (vaguely) like animals. This has led to many PWNe collecting animal monikers (‘The Mouse’, ‘The Dragonfly’, ‘The Rabbit’ – we are guilty of some of these…).

In between these early and late phases, the story is often more complex and the PWN interaction with the supernova shock wave leads to complicated morphologies. One of the prime examples is the PWN in the supernova remnant RCW 89 (also known as MSH 15-5(2)). Here the complex interactions form the PWN into the `Cosmic Hand’. Wanting to map the magnetic fields which structure this hand, the IXPE team took a long hard stare at MSH 15-5(2) and its central pulsar.

The scientists admit that the match between IXPE’s data and the structure of the hand is not really a surprise, but confirming the match was necessary if they are ever going to figure out the fundamental laws that govern magnetic fields, laws that presently are not well understood, at all.

Scientists discover in archival data a slowly pulsing object that has been beating since 1988

The uncertainty of science: Using archival data, scientists have discovered a previously undetected but very strange slowly pulsing object that has been doing so since 1988.

Astronomers have found an ultra-slow, long-lasting source of radio-wave pulses, and they are perplexed as to its true nature. While “regular” radio pulsars have very short periods, from seconds down to just a few milliseconds, this source emits a brief pulse of radio waves about three times per hour. What’s more, it has been doing this for decades. “I do not think we can say yet what this object is,” says Victoria Kaspi (McGill University), a pulsar researcher who was not involved in the new study.

Natasha Hurley-Walker (Curtin University, Australia) and her colleagues discovered the mysterious source in data from the Murchison Widefield Array (MWA) observatory in Western Australia. They carried out follow-up observations with the MWA and with other radio observatories in Australia and South Africa. Known as GPM J1839-10, the tardy blinker is located at a distance of some 18,500 light-years away in the constellation Scutum. Archival data from the Very Large Array in New Mexico and the Indian Giant Metrewave Radio Telescope reveal that it has been pulsating at least since 1988, with a period of just under 22 minutes (1,318.1957 seconds, to be precise).

In a sense, the object is a pulsar, since on a very basic level it does what all pulsars do, send a radio beat in our direction in a precise pattern. The problem is that according to present theories that say pulsars are actually magnetized neutron stars rotating quickly, this object is rotating too slowly to be one.

Astronomers discover pulsar with slowest rotation rate of any known neutron star

The uncertainty of science: Using the MeerKAT radio telescope in South Africa, astronomers have discovered a pulsar with the slowest rotation rate of any known neutron star, completing each rotation every 76 seconds.

According to the press release:

Neutron stars are extremely dense remnants of supernova explosions of massive stars. Scientists know of about 3,000 of these in our Galaxy. However, the new discovery is unlike anything seen so far. The team think it could belong to the theorised class of ultra-long period magnetars – stars with extremely strong magnetic fields.

From the paper’s abstract:

With a spin period of 75.88 s, a characteristic age of 5.3 Myr and a narrow pulse duty cycle, it is uncertain how its radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties, such as quasi-periodicity and partial nulling, that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long-period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long-period magnetars and fast radio bursts.

Essentially, a pulsar with this length rotation was not expected, and its existence throws a wrench into present theories about their formation and evolution. That its existence might provide a link between neutron stars, magnetars, and the as-yet unexplained fast radio bursts, however, is very intriguing.

China’s FAST radio telescope discovers 93 new pulsars

The research team running China’s FAST radio telescope, the largest single dish such telescope in the world, have announced that they have discovered 93 new pulsars since October 2017.

China might still be having trouble finding a big name astronomer to run the telescope, but in the meantime it looks like their own people are taking advantage of the situation to use the telescope establish their own names.

China successfully tests navigation in space using pulsars

Using the X-ray space telescope Insight it launched in 2017, China has successfully tested an autonomous navigation system using pulsars.

The time interval of two adjacent pulses emitted by the pulsar is constant. If a spacecraft moves toward the pulsar, the received pulse interval will be shortened, and vise versa. Thus the observed pulse profile will change as the spacecraft moves in space. The relative arrival times of pulses also indicate the relative position of the spacecraft with respect to the pulsar. Therefore, by analyzing the characteristics of the pulsar signals received by the spacecraft, the three-dimensional position and velocity of the spacecraft can be determined, Zheng explained.

From Aug. 31 to Sept. 5, 2017, Insight observed the Crab pulsar for about five days to test the feasibility of pulsar navigation. The research team had also proposed an algorithm for X-ray pulsar navigation, according to Zhang Shuangnan, lead scientist of the Insight space telescope.

The research team further improved the algorithm and applied it in the processing of the observation data of the three detectors onboard Insight. The satellite’s orbit was determined successfully, with the positioning accuracy within 10 km, comparable to that of a similar experiment conducted on the International Space Station, Zhang said.

This is not the first such test. U.S. scientists did something similar using an X-ray telescope on ISS in 2017.

Scientists demonstrate first space navigation on ISS using pulsars

The stars are ours! Scientists using an x-ray telescope installed on ISS have demonstrated it is possible to pinpoint the location of a spaceship and thus navigate through space using pulsars.

In the SEXTANT demonstration that occurred over the Veteran’s Day holiday in 2017, the SEXTANT team selected four millisecond pulsar targets — J0218+4232, B1821-24, J0030+0451, and J0437-4715 — and directed NICER to orient itself so it could detect X-rays within their sweeping beams of light. The millisecond pulsars used by SEXTANT are so stable that their pulse arrival times can be predicted to accuracies of microseconds for years into the future.

During the two-day experiment, the payload generated 78 measurements to get timing data, which the SEXTANT experiment fed into its specially developed onboard algorithms to autonomously stitch together a navigational solution that revealed the location of NICER in its orbit around Earth as a space station payload. The team compared that solution against location data gathered by NICER’s onboard GPS receiver. “For the onboard measurements to be meaningful, we needed to develop a model that predicted the arrival times using ground-based observations provided by our collaborators at radio telescopes around the world,” said Paul Ray, a SEXTANT co-investigator with the U. S. Naval Research Laboratory. “The difference between the measurement and the model prediction is what gives us our navigation information.”

The goal was to demonstrate that the system could locate NICER within a 10-mile radius as the space station sped around Earth at slightly more than 17,500 mph. Within eight hours of starting the experiment on November 9, the system converged on a location within the targeted range of 10 miles and remained well below that threshold for the rest of the experiment, Mitchell said. In fact, “a good portion” of the data showed positions that were accurate to within three miles. “This was much faster than the two weeks we allotted for the experiment,” said SEXTANT System Architect Luke Winternitz, who works at Goddard. “We had indications that our system would work, but the weekend experiment finally demonstrated the system’s ability to work autonomously.”

I think everyone who is interested in interstellar space travel has assumed since the discovery of the first pulsars that they would end up serving as the future north star for interstellar travelers. This experiment shows us how it will be done.

Well read science fiction fans should recognized the literary reference in the tagline.

A pulsar that’s eating a galaxy

The uncertainty of science: Astronomers have discovered a pulsar emitting energy at a rate far greater than ever predicted and which is believed caused by the very fast in-fall of matter into the neutron star.

Astronomers have found a pulsating, dead star beaming with the energy of about 10 million suns. This is the brightest pulsar – a dense stellar remnant left over from a supernova explosion – ever recorded. The discovery was made with NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR. “You might think of this pulsar as the ‘Mighty Mouse’ of stellar remnants,” said Fiona Harrison, the NuSTAR principal investigator at the California Institute of Technology in Pasadena, California. “It has all the power of a black hole, but with much less mass.”

More here. The galaxy where this pulsar resides, M82, has been known for decades to be one of the most interesting, with evidence of vast explosions tearing it apart. This pulsar is at its center, and appears to be sucking in matter at a rate previously believed impossible, suggesting that the supermassive black holes found at the center of many galaxies could form much faster that any theory predicted.