Tag Archives: Schiaparelli

MRO color images of Schiaparelli crash site

Schiaparelli crash site

The image above, cropped from a wider image released today by the Mars Reconnaissance Orbiter science team, shows the Schiaparelli impact sites in color and in very high resolution. There are also high resolution images of the heat shield and parachute/back shell. As they note in describing the above image,

Where the lander module struck the ground, dark radial patterns that extend from a dark spot are interpreted as “ejecta,” or material thrown outward from the impact, which may have excavated a shallow crater. From the earlier image, it was not clear whether the relatively bright pixels and clusters of pixels scattered around the lander module’s impact site are fragments of the module or image noise. Now it is clear that at least the four brightest spots near the impact are not noise. These bright spots are in the same location in the two images and have a white color, unusual for this region of Mars. The module may have broken up at impact, and some fragments might have been thrown outward like impact ejecta.

In other words, the lander crashed hard when it hit the ground, throwing pieces and ground material everywhere.

Schiaparelli failure focuses in on altimeter data

The investigation into the landing failure last week of the ExoMars 2016 lander, Schiaparelli, is now focusing on a failure in the spacecraft’s altitude software.

The most likely culprit is a flaw in the craft’s software or a problem in merging the data coming from different sensors, which may have led the craft to believe it was lower in altitude than it really was, says Andrea Accomazzo, ESA’s head of solar and planetary missions. Accomazzo says that this is a hunch; he is reluctant to diagnose the fault before a full post-mortem has been carried out. But if he is right, that is both bad and good news.

European-designed computing, software and sensors are among the elements of the lander that are to be reused on the ExoMars 2020 landing system, which, unlike Schiaparelli, will involve a mixture of European and Russian technology. But software glitches should be easier to fix than a fundamental problem with the landing hardware, which ESA scientists say seems to have passed its test with flying colours. “If we have a serious technological issue, then it’s different, then we have to re-evaluate carefully. But I don’t expect it to be the case,” says Accomazzo.

MRO images Schiaparelli on Mars

before and after Schiaparelli

A comparison of images taken by Mars Reconnaissance Orbiter before and after Schiaparelli’s failed attempt to land on Mars have revealed changes that are likely the lander on the surface. The image on the right is a composite that I’ve made showing the two images. The black spot near the top and the white spot near the bottom are not in the first image.

It is thought that the white spot is likely Schiaparelli’s parachute, while the dark spot is thought to be the lander’s impact point.

The larger dark spot near the upper edge of the enlargement was likely formed by the Schiaparelli lander. The spot is elliptical, about 50 by 130 feet (15 by 40 meters) in size, and is probably too large to have been made by the impact of the heat shield.

The large size of the dark spot suggests that the lander hit the ground hard enough to create this large scar.

Did Opportunity see Schiaparelli?

Opportunity image of Schiaparelli?

Because Schiaparelli was aimed at a landing site somewhat close to the Mars rover Opportunity, the science team aimed the rover’s panoramic camera at the sky yesterday, taking fourteen pictures in the hope of capturing the lander as it came down. Of those fourteen images, the image on the right, reduced in resolution, is the only one that shows that bright streak in the upper right.

close-up of streak

Though this streak might be an artifact, I do not think so. To the left is a close-up from the full resolution image, showing the streak in detail. That doesn’t look like an artifact. It still could be a meteorite, but I also think that doubtful. The coincidence of a meteorite flashing across the sky at the same exact moment Opportunity is looking to photograph Schiaparelli’s landing is too unlikely.

If this is Schiaparelli, expect a press release from NASA in the next few days.

Schiaparelli landing apparently a failure

This report from russianspaceweb.com provides some details about the apparent landing failure of the European Mars probe Schiaparelli on Wednesday.

The very preliminary analysis of the data revealed a number of serious problems in the final phase of the parachute descent. The telemetry showed that the back heat shield holding the parachute had been ejected earlier than scheduled — 50 seconds instead of 30 seconds before the touchdown. Also, the lander was apparently descending at a speed higher than planned. There were also indications that the soft-landing engines had fired for only three or four seconds and all communications from the lander were cut 19 seconds later, or shortly before touchdown. By that time, Schiaparelli’s landing radar had been activated.

It appears the parachutes were released too soon so that they did not function properly and slow the spacecraft down enough. When the retro-rockets fired the spacecraft was probably also closer to the ground than planned and falling too fast, so they failed to stop it from impacting the surface hard and prematurely.

Fate of Schiaparelli remains unknown

While Europe’s Trace Gas Orbiter has successfully gone into orbit around Mars, it remains unknown whether the lander Schiaparelli was able today to land successfully on the surface.

The carrier signal from Schiaparelli recorded by Mars Express abruptly ended shortly before landing, just as the beacon tone received by a ground-based radio telescope in India stopped in real-time earlier today.

Paolo Ferri, head of ESA’s mission operations department, just gave an update on the situation. “We saw the signal through the atmospheric phase — the descent phase. At a certain point, it stopped,” Ferri said. “This was unexpected, but we couldn’t conclude anything from that because this very weak signal picked up on the ground was coming from an experimental tool.

“We (waited) for the Mars Express measurement, which was taken in parallel, and it was of the same kind. It was only recording the radio signal. The Mars Express measurement came at 1830 (CEST) and confirmed exactly the same: the signal went through the majority of the descent phase, and it stopped at a certain point that we reckon was before the landing.

“There could be many many reasons for that,” Ferri said. “It’s clear these are not good signs, but we will need more information.”

ExoMars 2016 in detail

This Nature article provides a nice summary of the European/Russian ExoMars 2016 mission that on Wednesday will try to place a lander on Mars as well as put an orbiter in orbit.

Neither probe is going to provide many exciting photos. The orbiter, dubbed boringly the Trace Gas Orbiter, is designed to study Mars’ atmosphere, while the lander, Schiaparelli, is essentially a technology test mission for planning and designing what Europe and Russia hope will be a more ambitious lander/orbiter mission in 2020.

Anyone expecting spectacular pictures from Schiaparelli itself might be disappointed — photos will be limited to 15 black-and-white shots of the Martian surface from the air, intended to help piece together the craft’s trajectory. No photos will be taken on the surface, because the lander lacks a surface camera.

Schiaparelli’s instruments will study the Martian atmosphere, including the possible global dust storm that might happen this month but so far has not yet appeared. The instruments will also be able to detect lightning, should it exist on Mars.

Schiaparelli lander successfully separates from orbiter

In preparation for its Mars landing on October 19, Schiaparelli has successfully separated from the Trace Gas Orbiter of the European/Russian ExoMars 2016 mission.

They had some initial communications issues soon after separation, all of which have now been resolved.

ExoMars 2016 bearing down on Mars

This article provides a detailed look at Sunday’s arrival of ExoMars 2016 at Mars.

If all goes right the Schiaparelli lander will soft land on the surface while the Trace Gas Orbiter will enter an initial 185 by 60,000 mile orbit, which will slowly be adjusted so that by January it can begin its atmospheric research.

Though the Russian contribution to this mission was only the rocket that sent it to Mars, if the mission succeeds it will be the first time any Mars mission with major Russian participation has succeeded. The failure rate for any Russian effort to go to Mars has been 100%. And it hasn’t been because the missions have been particularly difficult. The majority of their failures occurred in the 1960s and 1970s, even as they were very successfully completing much harder lander missions to Venus.

It has almost as if there is a curse against any Russian attempt to visit the Red Planet. Hopefully, that curse will finally be broken on Sunday.

The landing site for ExoMars’ Schiaparelli lander

This ESA press release provides a nice overview of the landing area that the Schiaparelli lander on ExoMars is targeting.

The landing ellipse, measuring 100 x 15 km, is located close to the equator, in the southern highlands of Mars. The region was chosen based on its relatively flat and smooth characteristics, as indicated in the topography map, in order to satisfy landing safety requirements for Schiaparelli. NASA’s Opportunity rover also landed within this ellipse near Endurance crater in Meridiani Planum, in 2004, and has been exploring the 22 km-wide Endeavour crater for the last five years. Endeavour lies just outside the south-eastern extent of Schiaparelli’s landing ellipse.

Since the primary missions of both Schiaparelli and the ExoMars orbiter, dubbed the Trace Gas Orbiter, is test the technology for getting to and landing on Mars (in preparation for the more challenging 2020 ExoMars mission), I suspect that they chose this very well studied and already visited area to make this test landing less risky.

Side note: ExoMars successfully completed its second and last planned mid-course correction yesterday in preparation for its October arrival at Mars.