The creation in the lab of an as yet unnamed superheavy element adds weight to the theory that there might exist even heavier elements that are stable in nature.

The creation in the lab of an as yet unnamed superheavy element adds weight to the theory that there might exist even heavier elements that are stable in nature.

The scientists did not observe element 117 directly. Instead, they searched for its daughter products after it radioactively decayed by emitting alpha particles—helium nuclei with two protons and two neutrons. “The heavy nuclei makes an alpha decay to produce element 115, and this also decays by alpha decay,” says Jadambaa Khuyagbaatar of GSI, lead author of a paper reporting the results published on 1 May in Physical Review Letters.

After a few more steps in this decay chain, one of the nuclei produced is the isotope lawrencium 266—a nucleus with 103 protons and 163 neutrons that had never been seen before. Previously known isotopes of lawrencium have fewer neutrons, and are less stable. This novel species, however, has an astonishingly long half-life of 11 hours, making it one of the longest-lived superheavy isotopes known to date. “Perhaps we are at the shore of the island of stability,” Düllmann says.

If these superheavy elements could be created, they would be the stuff of science fiction. They might have properties that we would find extremely useful.