Shells of dust surrounding massive binary star

Webb infrared image of dust shells surrounding binary star system
Click for full image.

Cool image time! Using the Webb telescope, astronomers have detected a series of concentric shells surrounding the massive binary star dubbed Wolf-Rayet 140.

The infrared image to the right shows these shells quite clearly. As noted by astronomer Ryan Lau:

“On the night that my team’s Early Release Science observations of the dust-forming massive binary star Wolf-Rayet (WR) 140 were taken, I was puzzled by what I saw in the preview images from the Mid-Infrared Instrument (MIRI). There seemed to be a strange-looking diffraction pattern, and I worried that it was a visual effect created by the stars’ extreme brightness. However, as soon as I downloaded the final data I realized that I was not looking at a diffraction pattern, but instead rings of dust surrounding WR 140 – at least 17 of them.

“I was amazed. Although they resemble rings in the image, the true 3D geometry of those semi-circular features is better described as a shell. The shells of dust are formed each time the stars reach a point in their orbit where they are closest to each other and their stellar winds interact. The even spacing between the shells indicates that dust formation events are occurring like clockwork, once in each eight-year orbit. In this case, the 17 shells can be counted like tree rings, showing more than 130 years of dust formation. Our confidence in this interpretation of the image was strengthened by comparing our findings to the geometric dust models by Yinuo Han, a doctoral student at the University of Cambridge, which showed a near-perfect match to our observations.

Furthermore, the spectroscopy from Webb says these dust shells are carbon-enriched, showing that the dust released by these aged massive stars is a significant source of the carbon in the universe, the fundamental atom needed for life.

New Wolf-Rayet star discovered 8,000 light years away

Astronomers have discovered a Wolf-Rayet star — the kind of star thought to eventually cause major explosions — 8,000 light years away.

The binary star system, containing a pair of massive ‘Wolf-Rayet’ stars, has been discovered by an international team of researchers, including Professor Paul Crowther from the University of Sheffield, and published in Nature Astronomy.

Wolf-Rayet stars are amongst the hottest stars in the Universe, blast out powerful winds of hot gas, and represent the last stage in the evolution of the most massive stars prior to exploding as a supernova.

Located around 8,000 light years away – half a billion times further away than our Sun – the binary system is surrounded by a gigantic dust cloud. The collision between the winds of the two stars can form dust, which takes on elegant spiral pinwheel shapes as the stars orbit each other.

Expect to see a number of news articles hinting at how this system is a deadly threat to Earth. It is not. For one thing, it is too far away for any supernovae or gamma ray burst to cause serious harm here. Second, it will be a long time before any of that is going to happen.

Wolf-Rayet stars however are rare, and being able to study them helps astronomers better understand the life and death of stars. Having another so relatively close is a boon to astronomers.

Was the solar system formed inside a giant bubble?

Don’t bet the house on this! Astronomers have come up with a new theory for the formation of the solar system, that it was formed inside a giant bubble inside a Wolf-Rayet star, in order to explain the known ratios of certain isotopes here.

The new theory for how the solar system formed starts with an extremely massive star known as a Wolf-Rayet star. Of all the stars in the universe, these stars burn the hottest. Because they are so hot, they also have exceptionally strong stellar winds.

As a Wolf-Rayet star sheds its outer layers – a normal end-of-life process for a giant star – its strong stellar winds plow through its loosely held cloak of material, forming densely shelled bubbles. According to the study, the solar system could have formed inside of one of these bubbles.

While this theory would explain a number of mysteries about the ratios of aluminum-26 and iron-60 in our solar system, which correspond closer to those in a Wolf-Rayet star than the galaxy itself, it is quite far-fetched. More hard data is necessary, including real evidence of such things actually happening in such stars, before it can be taken very seriously.