New exoplanet defies accepted theories of planet formation
The uncertainty of science: A newly discovered exoplanet, the size of Jupiter and orbiting a star half the size of the Sun, should not exist based on all the presently favored theories of planet formation.
New research, led by Dr Daniel Bayliss and Professor Peter Wheatley from the University of Warwick’s Astronomy and Astrophysics Group, has identified the unusual planet NGTS-1b – the largest planet compared to the size of its companion star ever discovered in the universe.
NGTS-1b is a gas giant six hundred light years away, the size of Jupiter, and orbits a small star with a radius and mass half that of our sun.
Its existence challenges theories of planet formation which state that a planet of this size could not be formed by such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. The planet is a hot Jupiter, at least as large as the Jupiter in our solar system, but with around 20% less mass. It is very close to its star – just 3% of the distance between Earth and the Sun – and orbits the star every 2.6 days, meaning a year on NGTS-1b lasts two and a half days.
No one should be surprised by this. While the present theories of planet formation are useful and necessary, giving scientists a rough framework for studying exoplanets, they should not be taken too seriously. We simply do not yet have enough information about how stars, solar systems, and planets form.
Readers!
My annual February birthday fund-raising drive for Behind the Black is now over. Thank you to everyone who donated or subscribed. While not a record-setter, the donations were more than sufficient and slightly above average.
As I have said many times before, I can’t express what it means to me to get such support, especially as no one is required to pay anything to read my work. Thank you all again!
For those readers who like my work here at Behind the Black and haven't contributed so far, please consider donating or subscribing. My analysis of space, politics, and culture, taken from the perspective of an historian, is almost always on the money and ahead of the game. For example, in 2020 I correctly predicted that the COVID panic was unnecessary, that the virus was apparently simply a variation of the flu, that masks were not simply pointless but if worn incorrectly were a health threat, that the lockdowns were a disaster and did nothing to stop the spread of COVID. Every one of those 2020 conclusions has turned out right.
Your help allows me to do this kind of intelligent analysis. I take no advertising or sponsors, so my reporting isn't influenced by donations by established space or drug companies. Instead, I rely entirely on donations and subscriptions from my readers, which gives me the freedom to write what I think, unencumbered by outside influences.
You can support me either by giving a one-time contribution or a regular subscription. There are four ways of doing so:
1. Zelle: This is the only internet method that charges no fees. All you have to do is use the Zelle link at your internet bank and give my name and email address (zimmerman at nasw dot org). What you donate is what I get.
2. Patreon: Go to my website there and pick one of five monthly subscription amounts, or by making a one-time donation.
3. A Paypal Donation or subscription:
4. Donate by check, payable to Robert Zimmerman and mailed to
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652
You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage or shown in the menu above.
The uncertainty of science: A newly discovered exoplanet, the size of Jupiter and orbiting a star half the size of the Sun, should not exist based on all the presently favored theories of planet formation.
New research, led by Dr Daniel Bayliss and Professor Peter Wheatley from the University of Warwick’s Astronomy and Astrophysics Group, has identified the unusual planet NGTS-1b – the largest planet compared to the size of its companion star ever discovered in the universe.
NGTS-1b is a gas giant six hundred light years away, the size of Jupiter, and orbits a small star with a radius and mass half that of our sun.
Its existence challenges theories of planet formation which state that a planet of this size could not be formed by such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. The planet is a hot Jupiter, at least as large as the Jupiter in our solar system, but with around 20% less mass. It is very close to its star – just 3% of the distance between Earth and the Sun – and orbits the star every 2.6 days, meaning a year on NGTS-1b lasts two and a half days.
No one should be surprised by this. While the present theories of planet formation are useful and necessary, giving scientists a rough framework for studying exoplanets, they should not be taken too seriously. We simply do not yet have enough information about how stars, solar systems, and planets form.
Readers!
My annual February birthday fund-raising drive for Behind the Black is now over. Thank you to everyone who donated or subscribed. While not a record-setter, the donations were more than sufficient and slightly above average.
As I have said many times before, I can’t express what it means to me to get such support, especially as no one is required to pay anything to read my work. Thank you all again!
For those readers who like my work here at Behind the Black and haven't contributed so far, please consider donating or subscribing. My analysis of space, politics, and culture, taken from the perspective of an historian, is almost always on the money and ahead of the game. For example, in 2020 I correctly predicted that the COVID panic was unnecessary, that the virus was apparently simply a variation of the flu, that masks were not simply pointless but if worn incorrectly were a health threat, that the lockdowns were a disaster and did nothing to stop the spread of COVID. Every one of those 2020 conclusions has turned out right.
Your help allows me to do this kind of intelligent analysis. I take no advertising or sponsors, so my reporting isn't influenced by donations by established space or drug companies. Instead, I rely entirely on donations and subscriptions from my readers, which gives me the freedom to write what I think, unencumbered by outside influences.
You can support me either by giving a one-time contribution or a regular subscription. There are four ways of doing so:
1. Zelle: This is the only internet method that charges no fees. All you have to do is use the Zelle link at your internet bank and give my name and email address (zimmerman at nasw dot org). What you donate is what I get.
2. Patreon: Go to my website there and pick one of five monthly subscription amounts, or by making a one-time donation.
3. A Paypal Donation or subscription:
4. Donate by check, payable to Robert Zimmerman and mailed to
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652
You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage or shown in the menu above.
Hot Jupiters can’t form where they are anyway (stellar winds quickly blow away all H and He that close), they must’ve moved inwards by tossing out a neighbor, which fits with the vagabond planets found. Star systems form out of a common cluster and can relatively easily trade material with each other as long as they are still co-moving. This star has had company.
If this planet is defying the accepted theory of planet formation, maybe its made of “Molten carpet”?
How can a star be half of both our suns radius and mass? Isn’t it a mater of square vs. cube?
LocalFluff is on to it. “This star has had company.”
SteveC, I would assume that the smaller star is more dense
@SteveC, like Judy writes. Larger stars are hotter because their greater mass causes higher pressure at their center, fusing more hydrogen and the heat puffs them up. Planets don’t get much larger volume than Jupiter, even if one adds ten Jupiter masses. It mostly just increases the density, until fusion ignites at the center.