To read this post please scroll down.

 

Readers! A November fund-raising drive!

 

It is unfortunately time for another November fund-raising campaign to support my work here at Behind the Black. I really dislike doing these, but 2025 is so far turning out to be a very poor year for donations and subscriptions, the worst since 2020. I very much need your support for this webpage to survive.

 

And I think I provide real value. Fifteen years ago I said SLS was garbage and should be cancelled. Almost a decade ago I said Orion was a lie and a bad idea. As early as 1998, long before almost anyone else, I predicted in my first book, Genesis: The Story of Apollo 8, that private enterprise and freedom would conquer the solar system, not government. Very early in the COVID panic and continuing throughout I noted that every policy put forth by the government (masks, social distancing, lockdowns, jab mandates) was wrong, misguided, and did more harm than good. In planetary science, while everyone else in the media still thinks Mars has no water, I have been reporting the real results from the orbiters now for more than five years, that Mars is in fact a planet largely covered with ice.

 

I could continue with numerous other examples. If you want to know what others will discover a decade hence, read what I write here at Behind the Black. And if you read my most recent book, Conscious Choice, you will find out what is going to happen in space in the next century.

 

 

This last claim might sound like hubris on my part, but I base it on my overall track record.

 

So please consider donating or subscribing to Behind the Black, either by giving a one-time contribution or a regular subscription. I could really use the support at this time. There are five ways of doing so:

 

1. Zelle: This is the only internet method that charges no fees. All you have to do is use the Zelle link at your internet bank and give my name and email address (zimmerman at nasw dot org). What you donate is what I get.

 

2. Patreon: Go to my website there and pick one of five monthly subscription amounts, or by making a one-time donation. Takes about a 10% cut.
 

3. A Paypal Donation or subscription, which takes about a 15% cut:

 

4. Donate by check. I get whatever you donate. Make the check payable to Robert Zimmerman and mail it to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage or shown in the menu above.


SpaceX declines to shift Starlink satellite to avoid collision

When European Space Agency (ESA) engineers realized there was a greater than normal chance that a new SpaceX Starlink satellite could collide with ESA’s already orbiting Aeolus satellite, they asked SpaceX to shift its orbit, only to have SpaceX decline.

According to Holger Krag, head of the Space Debris Office at ESA, the risk of collision between the two satellites was 1 in 1,000 – ten times higher than the threshold that requires a collision avoidance maneuver. However, despite Aeolus occupying this region of space nine months before Starlink 44, SpaceX declined to move their satellite after the two were alerted to the impact risk by the U.S. military, who monitor space traffic. “Based on this we informed SpaceX, who replied and said that they do not plan to take action,” says Krag, who said SpaceX informed them via email – the first contact that had been made with SpaceX, despite repeated attempts by Krag and his team to get in touch since Starlink launched. “It was at least clear who had to react. So we decided to react because the collision was close to 1 in 1,000, which was ten times higher than our threshold.”

As to why SpaceX refused to move their satellite, that is not entirely clear (the company did not respond to a request for comment). Krag suspected it could be something to do with SpaceX’s electric propulsion system, which “maybe is not reacting so fast” as the chemical propulsion on board Aeolus.

The article is clearly spun to make SpaceX look bad, though based on the stated facts the company shot itself in the foot quite ably. If their propulsion system could not have done the job as well as the other satellite, they should have simply said so and worked with ESA to get the issue fixed, rather than simply saying they would do nothing.

Genesis cover

On Christmas Eve 1968 three Americans became the first humans to visit another world. What they did to celebrate was unexpected and profound, and will be remembered throughout all human history. Genesis: the Story of Apollo 8, Robert Zimmerman's classic history of humanity's first journey to another world, tells that story, and it is now available as both an ebook and an audiobook, both with a foreword by Valerie Anders and a new introduction by Robert Zimmerman.

 

The print edition can be purchased at Amazon or from any other book seller. If you want an autographed copy the price is $60 for the hardback and $45 for the paperback, plus $8 shipping for each. Go here for purchasing details. The ebook is available everywhere for $5.99 (before discount) at amazon, or direct from my ebook publisher, ebookit. If you buy it from ebookit you don't support the big tech companies and the author gets a bigger cut much sooner.


The audiobook is also available at all these vendors, and is also free with a 30-day trial membership to Audible.
 

"Not simply about one mission, [Genesis] is also the history of America's quest for the moon... Zimmerman has done a masterful job of tying disparate events together into a solid account of one of America's greatest human triumphs."--San Antonio Express-News

6 comments

  • Mike Borgelt

    1 in 1000? I can see why SpaceX didn’t bother.

  • avg_joe

    I think the story is spun. Too many things don’t make sense or were left out. Spacex launched 60 satellites. 57 moved from the 320km initial orbit to 550km. This has been established. Three failed to respond and 2 were to be used to test de-orbiting. To say that Spacex “refused” to alter the course of one of the 2 test units seems ludicrous. They were destined for destruction regardless. The remaining 3 in the 320km orbit were non-functional. More than likely it was one of these that were the problem and therefore, Spacex couldn’t move it (having no control). That’s not the same as “refusing”.
    The article suggests that Spacex risked blowing up a very expensive satellite and raining debris over the 320km orbit… to be obstinate? There was certainly no financial incentive to take such a risk and the avoidance maneuver would have made a great test.

    … unless this was one of the dead satellites and Spacex couldn’t move it and the original article was basic B.S.

  • mpthompson

    > The article is clearly spun to make SpaceX look bad…

    My take as well. Best to get the other side of the story before forming a strong opinion.

  • https://spacenews.com/esa-spacecraft-dodges-potential-collision-with-starlink-satellite/

    “The two satellites were predicted to come within about four kilometers of each other”

    Four km radius is a tremendously large cross-sectional area (50 million square meters). How does 50 million square meters translates into a 1:1,000 chance of collision? I have to presume that satellites come this close to each other all the time. So, from the get-go, something doesn’t smell right.

    SpaceX’s four satellites at this level probably don’t make up a large percentage of the satellites in this region). So, why is ESA complaining about what appears to be an extremely low probability? And we have to consider the possibility that SpaceX was looking at precedence. Are they willing to move any of their thousands of future satellites every time someone else asks them too when SpaceX’s own algorithms say that there is not a sufficient risk of collision? SpaceX needs to clarify the situation.

  • Andi

    That’s an interesting exercise. Assuming that both satellites are spheres with radius r (meters), the center of one would have to come within 2r of the center of the other to have a collision. The area of this danger region is therefore pi*(2r)^2 square meters.

    A four km radius gives a cross-sectional area of pi * 4000^2 square meters

    In order to have a 1:1000 chance of collision, that would mean that [pi*(2r)^2] / [pi * 4000^2] = 1/1000.

    Solving for r gives r = 4000 / [ 2 * sqrt(1000) ] = 63.2 m radius.

    That’s an awfully big satellite!

  • Edward

    DougSpace asked: “How does 50 million square meters translates into a 1:1,000 chance of collision?” Andi did a calculation.

    It isn’t just an “area” concern, because the timing is also important. If one satellite arrives before the other, then they will also miss each other. It requires a calculation of a volume. Also, Andi, you need to make the calculation for radii of both satellites, not just one, but assuming that both are the same size then I think the calculation gives r = 44.7 m, which is still large.

    The rules, however, use specific ovoid dimensions, because orbital perturbations are difficult to predict and calculate. Much of what they use for chance-of-collision calculation is rule of thumb rather than comparison of satellite size. Part of the reason is that satellites rarely are spherical or cubical but have protrusions such as antennas and solar panels.

    Considering that there are quite a few thousand satellites in low Earth orbit, both active and dead, satellite operators are becoming more and more concerned with the consequences of collisions and the Kessler effect (or syndrome), as exaggerated in the movie “Gravity.” With so many objects in orbit, there are plenty of opportunities for collision, and even more if you include the tiny debris that cannot be tracked.

    An example is the collision in 2009 between an active Iridium and a dead Kosmos satellite.
    https://en.wikipedia.org/wiki/2009_satellite_collision#Cause

Leave a Reply

Your email address will not be published. Required fields are marked *