Orbit of pristine comet in outer solar system is shifting inward

The orbit of a pristine comet that until now has kept it in the outer solar system, where it never got warm enough shed any material, is now shifting inward to join what is dubbed the Jupiter-family of comets, whose orbits are generally within that of Jupiter.

Although it has likely lost some supervolatile ices such as carbon dioxide ice (also known as dry ice) in the outer solar system beyond Jupiter, it is unlikely to have ever been in the inner solar system (where Earth, the other rocky planets, and [Jupiter-family comets] orbit), which is warm enough for water ice to sublime (‘evaporate’ from solid to gas),” Steckloff said. “This means that [Comet 2019] LD2 is a pristine comet, and presents a unique opportunity to observe how pristine [Jupiter-family comets] behave as their water ice begins to sublime for the first time and drive comet activity. Moreover, this transition is likely to finish in only 40 years from now, which is a blink of an eye for astronomy. This means that people alive today will be able to follow this object all the way through its transition into the [Jupiter-family] population.”

In 2019, when 2019 L2 was first identified, it was thought to be an asteroid that had suddenly become active, like a comet. Astronomers soon realized this was a mistake, that it was a comet whose orbit was being changed by its interaction with Jupiter.

The new data refines this conclusion, and confirms that observations of 2019 L2 will provide a lot of information about the make-up of the early solar system. More important, the comet’s orbit will allow for many observations, over a long period of time, unlike most comets that zip around the Sun in a year or so and then are gone.