Astronomers see a quiet galaxy become active for the first time

Using a number of space- and ground-based telescopes, astronomers have for the first time seen in real time what had previously been a very inactive and quiet galaxy become active and energetic, suggesting a major event at the galaxy’s center had taken place to change its behavior.

From the abstract of the paper [pdf]:

We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼ 10 6 M ⊙ AGN [a one million solar mass black hole] that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.

As noted in the press release:

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before.

If the central black hole is switching from being quiet to active, this galaxy is providing astronomers critical information for understanding such changes. This is particularly important to us here in the Milky Way, which has a very inactive central supermassive black hole weighing about 4 million solar masses. It would be very useful to understand what would cause it to become active, especially because such an event might even have an impact — possibly negative — throughout our entire galaxy.

Two interacting galaxies, both with active supermassive black holes at their center

Interacting galaxies
Click for original image.

Cool image time! The picture to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope and released today. From the caption:

This new image from NASA’s Hubble Space Telescope shows interacting galaxies known as AM 1214-255. These galaxies contain active galactic nuclei, or AGNs. An AGN is an extraordinarily luminous central region of a galaxy. Its extreme brightness is caused by matter whirling into a supermassive black hole at the galaxy’s heart.

Hubble observed the galaxy [on the right] as part of an AGN survey, with the aim of compiling a dataset about nearby AGNs to be used as a resource for astronomers investigating AGN physics, black holes, host galaxy structure, and more.

Note how the outer arms of both galaxies appear warped, with long streams of stars being pulled towards the other galaxy. Imagine living on a planet orbiting one of those stars as it finds itself over time farther and farther from its home galaxy, out in the vast emptiness of intergalactic space. While this sounds lonely, it has advantages for life, because isolated from the galaxy the star will not be threatened by supernovae, gamma ray bursts, and the host of other events that happen inside galaxies that can threaten biology.

It also means your night sky will be heralded by the rising and setting of two nearby giant galaxies.