OSIRIS-REx team confirms date for sample grab from Bennu

Nightingale landing site on Bennu
Click for full image.

The OSIRIS-REx science team has confirmed October 20, 2020 as the date the spacecraft will attempt a sample grab from the asteroid Bennu.

OSIRIS-REx is charged with collecting at least 2 oz. (60 grams) of Bennu’s rocky material to deliver back to Earth – the largest sample return from space since the Apollo program – and the mission developed two methods to verify that this sample collection occurred. On Oct. 22, OSIRIS-REx’s SamCam camera will capture images of the TAGSAM head to see whether it contains Bennu’s surface material. The spacecraft will also perform a spin maneuver on Oct. 24 to determine the mass of collected material. If these measures show successful collection, the decision will be made to place the sample in the Sample Return Capsule (SRC) for return to Earth. If sufficient sample has not been collected from [the primary landing site] Nightingale, the spacecraft has onboard nitrogen charges for two more attempts. A TAG attempt at the back-up Osprey site would be made no earlier than January 2021.

The press release at the link provides a lot of technical and interesting details about the sample-grab-and-go attempt, expected to put the spacecraft in contact with the asteroid’s surface for no more than sixteen seconds.

The maneuver itself is quite risky, as the available smooth landing area, as shown in the image above, is only half the size the equipment was designed for, and surrounded by large boulders.

Ryugu, like Bennu, appears to have rocks from other asteroids

Japanese scientists today announced that 21 rocks identified by Hayabusa-2 on the asteroid Ryugu have a composition that suggests they were formed on another asteroid.

Although Ryugu’s surface is uniformly dark [because it is a C-type asteroid], the scientists behind the new research found numerous boulders scattered across the asteroid that were 1.5 or more times brighter than their surroundings — that is, they reflected at least 50% more light than most of the rest of Ryugu. This contrast made the researchers suspect these boulders may have come from outside the asteroid.

By analyzing the spectrum of light reflected off 21 of these boulders, the scientists deduced they were made of minerals known as anhydrous silicates. Prior studies have suggested that such water-poor, silicon-rich rocks make up silicaceous or S-type asteroids, the most common kind of asteroid found in the inner main asteroid belt. The brightness of these boulders also matches the brightness of S-type asteroids.

This result compliments the result yesterday from scientists studying Bennu with OSIRIS-REx, and was in fact released at the same time. Both asteroids apparently contain material from other asteroids, suggesting that asteroids in their initial formation (as rubble piles) are routinely a mixture of material from many asteroids, thrown out during impacts and then recaptured.

Rocks from Vesta on Bennu?

Scientists reviewing data of Bennu from OSIRIS-REx have found six very bright boulders that have a make-up similar to that found on Vesta, which suggests they initially came from that asteroid.

The unusual boulders on Bennu first caught the team’s eye in images from the OSIRIS-REx Camera Suite. They appeared extremely bright, with some almost ten times brighter than their surroundings. They analyzed the light from the boulders using the OSIRIS-REx Visible and Infrared Spectrometer instrument to get clues to their composition. … The signature from the boulders was characteristic of the mineral pyroxene, similar to what is seen on Vesta and the vestoids, smaller asteroids that are fragments blasted from Vesta when it sustained significant asteroid impacts.

Of course it’s possible that the boulders actually formed on Bennu’s parent asteroid, but the team thinks this is unlikely based on how pyroxene typically forms. The mineral typically forms when rocky material melts at high-temperature. However, most of Bennu is composed of rocks containing water-bearing minerals, so it (and its parent) couldn’t have experienced very high temperatures. Next, the team considered localized heating, perhaps from an impact. An impact needed to melt enough material to create large pyroxene boulders would be so significant that it would have destroyed Bennu’s parent-body. So, the team ruled out these scenarios, and instead considered other pyroxene-rich asteroids that might have implanted this material to Bennu or its parent.

The make-up of Vesta matches. While these rocks might have been flung from Vesta during an impact there, eventually to settle on the surface of Bennu, Vesta is not the only possibility. We do not have a good census of the asteroids in the solar system. Others whose make-up is not yet determined could be a source, as well as an asteroid that no longer exists, destroyed by a collision long ago.

Regardless, these rocks confirm that in the process of formation in the early days of the solar system, asteroids of all types exchanged material.

Japan chooses Hayabusa-2’s next asteroid target

The new colonial movement: It appears that Japan has chosen the next asteroid that its probe Hayabusa-2 will visit in 2031, after it releases its samples to Earth in December from Ryugu.

Japan’s Hayabusa2 space explorer will aim to probe the asteroid “1998KY26” located between the orbits of Earth and Mars in 2031 after completing its current mission of collecting samples from another asteroid, the country’s science minister said Tuesday.

It is hoped Hayabusa2 will approach the ball-shaped asteroid, which has a diameter of around 30 meters and rotates about every 10 minutes, in July 2031, Education, Culture, Sports, Science and Technology Minister Koichi Hagiuda said.

It will not obtain samples from this second asteroid, only observe it close up by camera.

Bennu tosses particles from its surface routinely

Objects ejected from Bennu
Tracked particles after August 28, 2019 ejection event.

During OSIRIS-REx’s more than twenty months flying close to the Bennu, scientists have found that the asteroid routinely kicks particles from its surface into space, with these events linked to the asteroid’s day-night cycle.

Since arrival the scientists have seen and tracked more than 300 ejection events, with the almost seven hundred objects detected ranging from about an eighth to a half inch in size. Most moved about eight inches per second, comparable to “a beetle scurrying across the ground.”

The image to the right, cropped, reduced, and brightened to post here, comes from the introductory paper of a suite of papers on the subject, published today.

The timing of the events however reveals the most.

As Bennu completes one rotation every 4.3 hours, boulders on its surface are exposed to a constant thermo-cycling as they heat during the day and cool during the night. Over time, the rocks crack and break down, and eventually particles may be thrown from the surface. The fact that particle ejections were observed with greater frequency during late afternoon, when the rocks heat up, suggests thermal cracking is a major driver. The timing of the events is also consistent with the timing of meteoroid impacts, indicating that these small impacts could be throwing material from the surface. Either, or both, of these processes could be driving the particle ejections, and because of the asteroid’s microgravity environment, it doesn’t take much energy to launch an object from Bennu’s surface.

The link includes a cool movie showing the ejections events and the tracked paths of the ejected particles.

What OSIRIS-REx will grab from the asteroid Bennu in October

Closest view of Nightingale taken by OSIRIS-REx

On August 11th the spacecraft OSIRIS-REx did a sample grab-and-go rehearsal that put the spacecraft as close as 135 feet from the asteroid Bennu. During the rehearsal the spacecraft’s mapping camera (MapCam) snapped 22 images of the approach, showing the landing site, dubbed Nightingale, at the highest resolution yet.

From those images the science team created a movie. To the right is the closest image from that movie, lightened slightly and reduced to post here. It gives us the best view of the Nightingale landing site we will have prior to the October sample grab.

In essence, we are looking at the material that OSIRIS-REx will grab, though which particular rocks will be grabbed from this gravel pile are of course unknown. The spacecraft’s equipment is designed to capture pebbles smaller than 0.8 inches across. There are a good number of such rocks here, interspersed with a lot of larger rocks, including the several more than a foot across.

As I have noted previously, this landing site is about half the diameter of the landing sites the spacecraft was designed to touch down on. The rehearsal however gives us strong hope that OSIRIS-REx will be able to hit the bullseye. See this second movie, which shows the approach from two different cameras, with a wider context image provided to show how the spacecraft successfully hones in on its target.

Movie of OSIRIS-REx’s last rehearsal before sample grab

Closest point to Nighingale landing site during OSIRIS-REx's last rehearsal
Click image for full movie.

The OSIRIS-REx science team has released a movie made by the spacecraft’s navigation camera during its August 11th final rehearsal prior to the planned sample grab-and-go now set for October.

The image to the right is a capture of one image when the spacecraft was closest to the asteroid, about 131 feet above the surface. The target landing site, dubbed Nightingale, is the somewhat smooth area near the top half of the frame.

These images were captured over a three-hour period – the imaging sequence begins approximately one hour after the orbit departure maneuver and ends approximately two minutes after the back-away burn. In the middle of the sequence, the spacecraft slews, or rotates, so that NavCam 2 looks away from Bennu, toward space. Shortly after, it performs a final slew to point the camera (and the sampling arm) toward the surface again. Near the end of the sequence, site Nightingale comes into view at the top of the frame. The large, tall boulder situated on the crater’s rim (upper left) is 43 feet (13 meters) on its longest axis. The sequence was created using nearly 300 images taken by the spacecraft’s NavCam 2 camera.

Nightingale might be their best choice, but it remains about half the size they had originally wanted for their grab-and-go site, with far too many objects larger than planned. They designed the grab-and-go equipment to catch objects smaller than 0.8 inches. Little at this location, or on the entire surface of Bennu, is that small. The asteroid is truly a pile of gravel, with no dust.

Tiny asteroid sets record for closest fly-by of Earth

Astronomers using the robotic Zwicky Transient Facility (ZTF) at the Palomar Observatory in California on August 16 spotted a tiny asteroid just after it had zipped past the Earth at a distance of only 1,830 miles, the closest any asteroid has ever been seen to do so without hitting the ground.

Asteroid 2020 QG is about 10 to 20 feet (3 to 6 meters) across, or roughly the size of an SUV, so it was not big enough to do any damage even if it had been pointed at Earth; instead, it would have burned up in our planet’s atmosphere.

“The asteroid flew close enough to Earth that Earth’s gravity significantly changed its orbit,” says ZTF co-investigator Tom Prince, the Ira S. Bowen Professor of Physics at Caltech and a senior research scientist at JPL, which Caltech manages for NASA. Asteroids of this size that fly roughly as close to Earth as 2020 QG do occur about once a year or less, but many of them are never detected.

The ability to spot these things is continuing to improve, though it does not appear they have yet obtained enough information to predict 2020 QG’s full orbit, or when or if it will return.

Giant impact covered almost half of Gandymede’s surface

Artist's illustration of Ganydmede
Click for full illustration.

The uncertainty of science: Computer modeling and a review of images taken by Voyager 1 and 2 and the Galileo orbiter of Jupiter’s moon Ganymede now suggest the existence of a giant impact so large that it covers almost half the moon’s surface.

The artist’s illustration of Ganymede on the right, based on our presently incomplete set of global images, shows this impact area as the circular dark region.

Many furrows, or trough formations, have been observed on the surface of Ganymede, one of the Jovian moons. This research group comprehensively reanalyzed image data of Ganymede obtained by NASA’s Voyager 1, Voyager 2, and Galileo spacecrafts. The results revealed that almost all of these furrows appear to be arranged in concentric rings centered around a single point, indicating that this global multiring structure may be the remains of a giant crater. The radial extent of the multiring structures measured along Ganymede’s surface is 7800 km. For comparison, the mean circumference of Ganymede is only 16,530 km. If correct, this is the largest crater yet identified in the Solar System. The previous record holder with a 1900 km radius is on Calisto, another Jovian moon.

The conclusion reached here is very uncertain, since we really do not have a high resolution global map of Ganymede. All three spacecraft were only able to send back a scattering of high resolution images. The global map is based on Earth observations and images from the Hubble Space Telescope.

OSIRIS-REx completes closest sample grab rehearsal

OSIRIS-REx yesterday successfully completed its closest sample grab rehearsal, bringing the spacecraft about 131 feet from the surface of the asteroid Bennu.

The approximately four-hour “Matchpoint” rehearsal took the spacecraft through the first three of the sampling sequence’s four maneuvers: the orbit departure burn, the “Checkpoint” burn and the Matchpoint burn. Checkpoint is the point where the spacecraft autonomously checks its position and velocity before adjusting its trajectory down toward the event’s third maneuver. Matchpoint is the moment when the spacecraft matches Bennu’s rotation in order to fly in tandem with the asteroid surface, directly above the sample site, before touching down on the targeted spot.

Four hours after departing its 0.6-mile (1-km) safe-home orbit, OSIRIS-REx performed the Checkpoint maneuver at an approximate altitude of 410 feet (125 meters) above Bennu’s surface. From there, the spacecraft continued to descend for another eight minutes to perform the Matchpoint burn. After descending on this new trajectory for another three minutes, the spacecraft reached an altitude of approximately 131 ft (40 m) – the closest the spacecraft has ever been to Bennu – and then performed a back-away burn to complete the rehearsal.

During the rehearsal, the spacecraft successfully deployed its sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM), from its folded, parked position out to the sample collection configuration. Additionally, some of the spacecraft’s instruments collected science and navigation images and made spectrometry observations of the sample site, as will occur during the sample collection event. These images and science data were downlinked to Earth after the event’s conclusion.

The actual sample-grab-and-go attempt is scheduled for October 20th.

The short video below the fold shows spacecraft as it makes its closest approach. From the youtube page:
» Read more

Cryovolcanism on Ceres still ongoing?

3D simulation of Occator Crater on Ceres
Click for full 3D simulation image.
Click here for animated movie.

According to a new detailed analysis of data from the Dawn mission, scientists are now postulating that cryovolcanism in Occator Crater on Ceres began immediately after impact about 22 million years ago and has continued in fits and starts since.

Occator Crater was formed about 22 million years ago by a large impact. As in many other impact craters on Earth and on other planets, a central peak was formed, which collapsed again after some time. About 7.5 million years ago, brine rose to the surface within the remnants of the central peak. The water evaporated and certain salts, so-called carbonates, remained. They are responsible for the prominent bright deposits we see today, called Cerealia Facula, in the center of Occator Crater. Due to the loss of material in the interior, the inner part of the crater subsided. A round depression with a diameter of about 15 kilometers formed.

In the following millions of years, activity concentrated mainly on the eastern part of the crater floor. Through cracks and furrows, brine also rose to the surface there and produced further bright deposits, the Vinalia Faculae. About 2 million years ago the center of the crater woke up again: brine rose to the surface and within the central depression a dome of bright material was formed. “This process continued up to a million years ago and maybe even until today,” Dr. Nico Schmedemann from the University of Münster summarizes.

This hypothesis is further supported by second paper that proposes there remains a reservoir of salty underground liquid water in the tiny planet’s interior. Both add weight to the idea that any object in space that is large enough for gravity to force it into a spherical shape is going to behave like a planet, with a complex and active geology.

The first paper has a lot of uncertainty, however, centering entirely on its dependence on crater counts to determine age. While providing a rough age estimate, the method depends on many assumptions, is indirect, and could easily be entirely wrong.

Hayabusa-2’s future asteroid targets

Link here. There are two prime candidate asteroid targets, both near Earth astroids.

The possible secondary targets include the oblong asteroid 2001 AV43 or the asteroid 1998 KY 26. They’re each about the size of a large house and both orbit the Sun in roughly 500 days. The proposed plan would see Hayabusa 2 arriving at 2001 AV43 in the late 2029 time frame, or reaching 1998 KY 26 in July 2031. Both asteroids have a low enough relative speed relative to the spacecraft to put them within (eventual) reach after Hayabusa 2’s December flyby.

Interestingly, 2001 AV43 will fly 313,000 km from Earth (0.8 times the Earth-Moon distance) on November 11, 2029.

The two asteroids were selected from an initial field of 354 candidates, which was winnowed down based on accessibility and scientific interest. Both are fast rotators, as evidenced by their light curves, each spinning on its respective axis once every 10 minutes. This represents the shortest “day” of any known object in the solar system, suggesting that these asteroids are in fact solid objects and not simply loosely aggregated “rubble piles.” A visit to one of these asteroids would mark the first time a space mission has seen such an enigmatic fast rotator up close.

The asteroid 1998 KY26 is also a possible carbonaceous (C-type) asteroid, and Hayabusa 2’s exploration of such a space rock would be another first.

Going to 1998 KY26 would also require a distant pass of another asteroid. Going to 2001 AV43 would require a fly-by of Venus, which could provide more data on that planet. Based on this information, my guess is that they will opt for 1998 KY26.

The decision must likely be made before Hayabusa-2 drops off its Ryugu samples to Earth on December 6, 2020.

OSIRIS-REx preps for final rehearsal of sample grab

The OSIRIS-REx science and engineering team is getting ready for its August 11th final rehearsal of the sample grab-and-go at the asteroid Bennu that it plans to do in October.

If the rehearsal goes right, the spacecraft will descend to within 131 feet of the surface of Bennu as it deploys its equipment as if it would continue down to the surface. It will also fly in formation above the Nightingale sample site when it does this, taking the highest resolution images yet of the surface of the asteroid.

It will then back off, returning to its home orbit farther from Bennu. Engineers will then review what happened, and use that data to prepare for the actual sample grab-and-go, set for October 20, 2020.

Astronomers find freshly fallen meteorites based on tracking their fall

Australian astronomers have found two meteorites on the ground after spotting them in the sky before they fell, with one found only

The first had been spotted in the sky only a few weeks earlier, while the second had been spotted back in November 2019. They had had to postpone the search for the second until the restrictions for the Wuhan flu were lifted.

The discovery of the first was amusing:

Astronomer Dr Hadrien Devillepoix and planetary geologist Dr Anthony Lagain originally went on a reconnaissance mission to assess the latest fall site near Madura, taking drone imagery of the area. Dr Devillepoix said that as they were walking back to their car along the old telegraph track near Madura Cave, they spotted what appeared to be a real meteorite on the ground just in front of them.

“I thought Anthony was playing a prank on me, that he planted one of the fake meteorites we were using for the drone training session. But after a closer inspection, it was evident that the fist-sized, 1.1 kilogram rock we just found was indeed the meteorite we were after,” Dr Devillepoix said. Dr Devillepoix explained that although the rock was very close to the predicted fall position, the team was not expecting to find it that quickly in this bushy terrain.

Based on its track as it fell, the astronomers think it might be from the Aten family of asteroids, which orbit the Sun between Venus and Earth. Such asteroids are hard to find because of the glare of the Sun, and are thus not as well studied. This makes this find even more significant.

Finds like this, which are beginning to happen more and more, are important because, first, the meteorite doesn’t spend much time in the Earth environment, and second, they can precisely identify where the asteroid came from. Both facts allow scientists a much better understanding of the asteroids themselves.

A gravel pile floating in space that might hit the Earth

flat rock near Osprey
Click for full image.

Come October the probe OSIRIS-REx will attempt a quick touchdown on the asteroid Bennu to grab some tiny particles, all smaller than 0.8 inches across.

Bennu is what scientists have described as a “rubble-pile” asteroid. They use that name because it is simply a conglomeration of a lot of rocks, pebbles, boulders, and stones, all jagged and of all sizes. The overall gravity has never been strong enough to squeeze them together, at least as far as we can see, and so they are piled up loosely across the asteroid’s surface wherever we look.

I think a better name for this asteroid would a floating gravel pile, since the material on it, as clearly shown in the image to the right (reduced and rotated to post here), more resembles the tailings one finds at a mine or quarry. This photo was taken by OSIRIS-REx on May 26, 2020 during its first dress rehearsal over its back-up touch-and-go sample grab site, Osprey. As the release caption notes,

The field of view is 12 ft (3.8 m). For reference, the bright rock [near] the tip of the boulder is 1 ft (0.3 m) across, which is about the size of a loaf of bread.

I have rotated the image 90 degrees so that east is up, because the full mosaic of the entire Osprey landing site, shown below, is oriented that way, and by rotating it to match it is easier to locate this image within it.
» Read more

OSIRIS-REx spots sun-caused erosion on Bennu

Rock on Bennu showing exfoliation
Click for full figure.

An analysis of images taken by OSIRIS-REx of the asteroid Bennu has allowed scientists to identify places where the changing temperatures from day to night has caused the surfaces of rocks to flake away, a process geologists label exfoliation.

The image on the right, cropped and reduced to post here, is from figure 1 in the paper. The yellow arrow points to a typical example of exfoliation, which is a process you can see on many rocks here on Earth.

Rocks expand when sunlight heats them during the day and contract as they cool down at night, causing stress that forms cracks that grow slowly over time. Scientists have thought for a while that thermal fracturing could be an important weathering process on airless objects like asteroids because many experience extreme temperature differences between day and night, compounding the stress. For example, daytime highs on Bennu can reach almost 127 degrees Celsius or about 260 degrees Fahrenheit, and nighttime lows plummet to about minus 73 degrees Celsius or nearly minus 100 degrees Fahrenheit. However, many of the telltale features of thermal fracturing are small, and before OSIRIS-REx got close to Bennu, the high-resolution imagery required to confirm thermal fracturing on asteroids didn’t exist.

The mission team found features consistent with thermal fracturing using the spacecraft’s OSIRIS-REx Camera Suite (OCAMS), which can see features on Bennu smaller than one centimeter (almost 0.4 inches). It found evidence of exfoliation, where thermal fracturing likely caused small, thin layers (1 – 10 centimeters) to flake off of boulder surfaces. The spacecraft also produced images of cracks running through boulders in a north-south direction, along the line of stress that would be produced by thermal fracturing on Bennu.

The typical erosion processes that can cause exfoliation (weather, gravity) are not possible on tiny Bennu, so the solution appears to rest with sunlight and sunlight alone.

This is not really a surprising result, but it is the first time it has been documented by data.

Bennu’s forbidding gravelly surface

Gravelly Osprey landing site on Bennu
Click for a higher resolution version.

On May 26 the OSIRIS-REx science team completed their first rehearsal and close approach to their back-up sample-grab-and-go site on Bennu, dubbed Osprey, getting as close as 820 feet. The image to the right, cropped and reduced to post here, shows that sample site within the white box. According to the image caption, the “long, light-colored boulder to the left of the dark patch, named Strix Saxum, is 17 ft (5.2 m) in length.” Note also that they have rotated the image so that east is at the top in order to make it more easily viewed.

This particular spot in this crater is actually a revision from their first choice from early in 2019, which originally was to the right and below the dark patch in the center of the crater. After six months of study, they decided instead on the present target area above the dark patch, because it seemed safer with the most sampleable material.

So how safe is this new location? Let’s take a closer look.
» Read more

That Jupiter Trojan comet-like asteroid was neither an asteroid nor a Trojan

Astronomers have now found that the asteroid that had suddenly become active, like a comet, and they had thought was part of the asteroids in Jupiter orbit called Trojans, was neither an asteroid nor a Trojan.

Instead, it is an actual comet captured in a strange unstable orbit around Jupiter.

[W]hen amateur astronomer Sam Deen used software on the Jet Propulsion Laboratory’s solar-system dynamics website to calculate the object’s orbit, he found P/2019 LD2 recently had a close encounter with Jupiter that left its orbit unstable. The model showed that the comet had likely been a Centaur, part of a family of outer solar system asteroids, with an orbit reaching out to Saturn. Then, on February 17, 2017, it passed about 14 million kilometers from Jupiter, an encounter that sent the comet on a wild ride and inserted it into an odd Jupiter-like orbit.

Yet although the swing past Jupiter put P/2019 LD2 into a Jupiter-like orbit, it didn’t move it near to one of the two Lagrange points where the combination of gravitational forces from Jupiter and the Sun hold Trojan asteroids. Instead of being 60° — one-sixth of the giant planet’s orbit — from Jupiter, P/2019 LD2 is only 21° ahead of Jupiter.

The orbit is unstable. It will bring the comet to within 3 million miles of Jupiter in 2063, but beyond that predictions are impossible. The exact closeness of that approach cannot be predicted with much precision, partly because of the chaotic nature of the orbit, and partly because of the random orbital changes that can occur because the comet is venting.

A Jupiter Trojan asteroid spouts a tail

The ATLAS telescope has discovered the first Jupiter Trojan asteroid to spout a tail like a comet.

Early in June 2019, ATLAS reported what seemed to be a faint asteroid near the orbit of Jupiter. The Minor Planet Center designated the new discovery as 2019 LD2. Inspection of ATLAS images taken on June 10 by collaborators Alan Fitzsimmons and David Young at Queen’s University Belfast revealed its probable cometary nature. Follow-up observations by the University of Hawaiʻi’s J.D. Armstrong and his student Sidney Moss on June 11 and 13 using the Las Cumbres Observatory (LCO) global telescope network confirmed the cometary nature of this body.

Later, in July 2019, new ATLAS images caught 2019 LD2 again – now truly looking like a comet, with a faint tail made of dust or gas. The asteroid passed behind the Sun and was not observable from the Earth in late 2019 and early 2020, but upon its reappearance in the night sky in April of 2020, routine ATLAS observations confirmed that it still looks like a comet. These observations showed that 2019 LD2 has probably been continuously active for almost a year.

While ATLAS has discovered more than 40 comets, what makes this object extraordinary is its orbit. The early indication that it was an asteroid near Jupiter’s orbit have now been confirmed through precise measurements from many different observatories. In fact, 2019 LD2 is a special kind of asteroid called a Jupiter Trojan – and no object of this type has ever before been seen to spew out dust and gas like a comet.

There are a number of mysteries here. First, why should it have suddenly become active, since its orbit is relatively circular (similar to Jupiter’s)? Second, it had been assumed that the Jupiter Trojans had been in their orbits for a long time and had long ago vented any ice on their surfaces. This discovery proves that assumption false. It suggests that either this asteroid is a comet that was recently captured, or that things can happen on these asteroids to bring some buried volatiles up to the surface, where they can then vent.

Above all, this asteroid shows that it is dangerous to assume all Jupiter Trojan asteroids are the same. I guarantee when we finally get a close look at a bunch, when the Lucy mission arrives beginning in 2027, the variety will be quite spectacular.

OSIRIS-REx rehearsal and landing rescheduled

The OSIRIS-REx science team today announced that, in order to give them more preparation time needed because of the coronavirus protocols, they have rescheduled their second rehearsal of the spacecraft’s touch-and-go sample grab from the asteroid Bennu from June to August, and delayed the actual touch-and-go sample grab from August to October.

The mission had originally planned to perform the first Touch-and-Go (TAG) sample collection event on Aug. 25 after completing a second rehearsal in June. This rehearsal, now scheduled for Aug. 11, will bring the spacecraft through the first three maneuvers of the sample collection sequence to an approximate altitude of 131 ft (40 m) over the surface of Bennu. The first sample collection attempt is now scheduled for Oct. 20, during which the spacecraft will descend to Bennu’s surface and collect material from sample site Nightingale.

Previously they had said that the rehearsal would get as close as 82 feet. Nothing has changed. That distance was the closest they expected the spacecraft to get. The new number, 131 feet, is in the middle of possible ranges. As explained to me by Erin Morton, head of communications for OSIRIS-REx in the Principal Investigator’s Office, “I originally chose the lowest altitude in that range to include in our public outreach materials, but later realized that it made more sense to use the mid-point altitude number, since that’s the average of the high and low possibilities.”

Though they have the ability to do two more sample grabs if the first in October is unsuccessful, they won’t bother if it succeeds. They must leave Bennu regardless in mid-2021 to return the sample to Earth on September 24, 2023.

OSIRIS-REx’s landing spot on the asteroid Bennu

Bennu, annotated
Click for full resolution unlabeled image.

The OSIRIS-REx science team today released another image of the asteroid Bennu, this time showing the planned Nightingale touch-and-go sample grab landing site.

The image to the right, reduced, cropped, and annotated by me, is that image. From the caption:

The crater where sample site Nightingale is located can be seen near the top, center of the image – it is a small region containing dark, fine-grained material. Bennu’s prime meridian boulder, Simurgh Saxum , is also visible in the lower left of the image, near the asteroid’s limb. Directly east of Simurgh is Roc Saxum . The field of view is 0.3 miles (0.5 km). For reference, Simurgh is 125 ft (38 m) across, which is about the size of a commercial airliner.

Nightingale is only about 50 feet across, which is about a third the size of the kind of smooth areas they had designed their grab-and-go equipment around. This global image illustrates the difficulties they face with that sample grab. Though there appear to be larger areas in this photo that seem smooth, they really are not. The asteroid has no dust, and the sample grab equipment is designed to suck up particles smaller than 0.8 inches in diameter. Most of the surface is covered with pebbles and gravel larger than this.

Thus they needed to find a spot where the bulk of the material is “fine-grained.” Nightingale fits that bill, though it has a small footprint and also has larger particles that pose a risk to the sample grab because they could damage the spacecraft, or clog the sample grab equipment.

Either way, for the spacecraft to autonomously guide itself accurately down to this small spot, surrounded as it is by much larger boulders, will be challenging, and is why they have done one dress rehearsal already, getting as close as 213 feet, and will do a second in June, getting down to 82 feet.

Bennu’s equatorial craters

Bennu's craters
Click for full image.

The OSIRIS-REx science team today released a neat image of Bennu, highlighting the string of impact craters along the rubble-pile asteroid’s equatorial ridge. The image to the right, cropped and reduced to post here, shows that image. From the release:

Bennu’s darkest boulder, Gargoyle Saxum , is visible on the equator, near the left limb. On the asteroid’s southern hemisphere, Bennu’s largest boulder, Benben Saxum , casts a long shadow over the surface. The field of view is 0.4 miles (0.7 km). For reference, the largest crater in the center of the image is 257 ft (78 m) wide, which is almost the size of a football field.

The photo was taken from a distance of six miles on April 28. The craters illustrate well the rubble pile/sandbox nature of this asteroid. They all look like what you’d expect if the impact was able to easily drive itself deep into the a pile of sand and loose rocks. The resulting crater thus has a very indistinct rim and a sloping floor down to a central point.

Evidence suggests Ryugu was once closer to Sun

The uncertainty of science: Spectral data collected of the surface of Ryugu by Japan’s Hayabusa-2 probe suggests that the asteroid once spent a period of time much closer to the Sun.

The combined data show an oddly striated world. Ryugu’s equator and poles are tinged blue and are brighter compared with its darker, reddish mid-latitudes. These color differences wouldn’t be obvious to the human eye, although the brightness changes might be.

…As Tomokatsu Morota (University of Tokyo) and colleagues write in the May 8th Science, Ryugu’s boulders likely start bluish. Then a combination of solar wind exposure, meteoroid impacts, and solar heating reddens them. This redder stuff migrates to the asteroid’s mid-latitudes over time, because topographically those are the lowest on Ryugu’s surface. That movement leaves the higher equator and polar regions relatively bluer and brighter.

Based on this data, the scientists posit that Ryugu was closer to the Sun from 800,000 to 8 million years ago, and that the evidence also suggests that the asteroid is only at most 17 million years old.

To put it mildly, there are great uncertainties to these conclusions.

Movie of OSIRIS-REx’s 1st landing rehearsal

Closest NavCam-2 image during rehearsal
Click for full movie.

The OSIRIS-REx science team has released a short movie taken by one of the spacecraft’s navigation camera (NavCam-2) during its first landing rehearsal on April 14. The image to the right, cropped to post here, is the closest image in the sequence, and shows the relatively smooth Nightingale target landing site near the bottom of the image, approximately 50 feet in diameter.

According to the release,

NavCam 2 captures images for the spacecraft’s Natural Feature Tracking (NFT) navigation system. The NFT system allows the spacecraft to autonomously guide itself to Bennu’s surface by comparing real-time images with an onboard image catalog. As the spacecraft descends to the surface, the NFT system updates the spacecraft’s predicted point of contact depending on OSIRIS-REx’s position in relation to Bennu’s landmarks. During the sample collection event, scheduled for August, the NavCam 2 camera will continuously image Bennu’s surface so that the NFT system can update the spacecraft’s position and velocity relative to Bennu as it descends towards the targeted touchdown point.

When the image above was taken the spacecraft was at its closest point, about 213 feet above the surface. Based on this movie, it looks like the system was working, and the spacecraft was refining its aim to head towards Nightingale.

Still, the landing site is not in the center of the image, which I would think is a concern, especially because Nightingale is only one-third the size of the kind of smooth target areas they had designed the system for. (When launched they expected to see smooth areas at least 160 feet across, and designed the system for this.)

The second rehearsal is presently scheduled for June 23, and will drop OSIRIS-REx to within 82 feet of the surface.

First exoplanet imaged was nothing more than a debris cloud

The uncertainty of science: What had originally been thought to be the first image ever taken of an exoplanet has now turned out to be only the fading and expanding cloud of debris, left over from a collusion.

The object, called Fomalhaut b, was first announced in 2008, based on data taken in 2004 and 2006. It was clearly visible in several years of Hubble observations that revealed it was a moving dot. Until then, evidence for exoplanets had mostly been inferred through indirect detection methods, such as subtle back-and-forth stellar wobbles, and shadows from planets passing in front of their stars.

Unlike other directly imaged exoplanets, however, nagging puzzles arose with Fomalhaut b early on. The object was unusually bright in visible light, but did not have any detectable infrared heat signature. Astronomers conjectured that the added brightness came from a huge shell or ring of dust encircling the planet that may possibly have been collision-related. The orbit of Fomalhaut b also appeared unusual, possibly very eccentric. “Our study, which analyzed all available archival Hubble data on Fomalhaut revealed several characteristics that together paint a picture that the planet-sized object may never have existed in the first place,” said Gáspár.

The team emphasizes that the final nail in the coffin came when their data analysis of Hubble images taken in 2014 showed the object had vanished, to their disbelief. Adding to the mystery, earlier images showed the object to continuously fade over time, they say. “Clearly, Fomalhaut b was doing things a bona fide planet should not be doing,” said Gáspár.

The interpretation is that Fomalhaut b is slowly expanding from the smashup that blasted a dissipating dust cloud into space. Taking into account all available data, Gáspár and Rieke think the collision occurred not too long prior to the first observations taken in 2004. By now the debris cloud, consisting of dust particles around 1 micron (1/50th the diameter of a human hair), is below Hubble’s detection limit. The dust cloud is estimated to have expanded by now to a size larger than the orbit of Earth around our Sun.

This is not the first exoplanet that astronauts thought they had imaged, only to find out later that it was no such thing.

Remember this when next you hear or read some scientist telling you they are certain about their results, or that the science is “settled.” Unless you can get close enough to get a real picture in high resolution, or have tons of data from many different sources over a considerable period of time, and conclusions must always be subject to skepticism

Movie of OSIRIS-REx touch-and-go rehearsal

Checkpoint rehearsal: last image
Click for movie.

The OSIRIS-REx science team yesterday released a short movie, compiled from thirty images taken during the April 14, 2020 rehearsal of the spacecraft’s planned August touch-and-go sample grab from the asteroid Bennu.

The rehearsal brought the spacecraft through the first two maneuvers of the sampling event to a point approximately 213 feet (65 meters) above the surface, before backing the spacecraft away. These images were recorded over a ten-minute span between the execution of the rehearsal’s “Checkpoint” burn, approximately 394 feet (120 meters) above the surface, and the completion of the back-away burn, which occurred approximately 213 feet (65 meters) above the surface. The spacecraft’s sampling arm – called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – is visible in the central part of the frame, and the relatively clear, dark patch of Bennu’s sample site Nightingale is visible in the later images, at the top. The large, dark boulder that the spacecraft approaches during the sequence is 43 feet (13 meters) on its longest axis.

The image to the right is the last frame of the movie, as the spacecraft has begun its retreat. The smoother area of Nightingale is at the top.

Based on the video, it appears as if the spacecraft would have missed the Nightingale target site had the rehearsal continued to touchdown. This might not be so, however. And even if it is, the reason for the rehearsal is to allow engineers to refine the process to make it more accurate. We shall see what changes in the second rehearsal in about a month or so.

OSIRIS-REx successfully completes touch-and-go rehearsal

OSIRIS-REx yesterday successfully completed its first dress rehearsal of the maneuver that will allow it in August to touch the surface of the asteroid Bennu and grab a sample.

Four hours after departing its 0.6-mile (1-km) safe-home orbit, the spacecraft performed the Checkpoint maneuver at an approximate altitude of 410 feet (125 meters) above Bennu’s surface. From there, the spacecraft continued to descend for another nine minutes on a trajectory toward – but not reaching – the location of the sampling event’s third maneuver, the “Matchpoint” burn. Upon reaching an altitude of approximately 246 ft (75 m) – the closest the spacecraft has ever been to Bennu – OSIRIS-REx performed a back-away burn to complete the rehearsal.

During the rehearsal, the spacecraft successfully deployed its sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM), from its folded, parked position out to the sample collection configuration. Additionally, some of the spacecraft’s instruments collected science and navigation images and made spectrometry observations of the sample site, as will occur during the sample collection event.

They plan one more rehearsal, getting even closer to the asteroid, before the August 25 sample grab.

OSIRIS-REx’s sample grab location on Bennu

Nightingale site on Bennu
Click for full image.

On April 14th engineers for the probe OSIRIS-REx will do the first of two dress rehearsals of their planned touch-and-go sample grab from the asteroid Bennu, presently planned for August 25.

The image to the right was taken on March 3, 2020 from about 1,000 feet away during the spacecraft’s third reconnaissance phase, and is centered on that touch-and-go site, dubbed Nightingale by the science team. It illustrates why that sample grab carries risks that were unexpected. As they point out on the image’s release page, “the rock in the [upper right] of the image is 2 ft (70 cm) long, which is about the length of a small ice chest.” Moreover, across the entire touchdown site are numerous other rocks ranging in size from fists to laptops.

When they designed the mission, they had assumed there would be places on Bennu’s surface made up mostly of dust. areas where such dust would have gathered into ponds, as seen in other asteroids. The expectation also assumed these areas would be larger than any of the smooth areas found on Bennu. As they have noted:
» Read more

1 2 3 23