Tag Archives: asteroids

OSIRIS-REx completes close fly-over of Bennu touchdown site

OSIRIS-REx has successfully completed the first of a series of increasingly closer fly-overs of its primary sample grab sites on the asteroid Bennu.

The spacecraft got as close as about 2,000 feet in order to take more high resolution images of the Nightingale landing site where they hope in August to do a touch-and-go sample grab.

A similar flyover of the backup sample collection site, Osprey, is scheduled for Feb. 11. Even lower flybys will be performed later this spring – Mar. 3 for Nightingale and May 26 for Osprey – as part of the mission’s Reconnaissance C phase activities. The spacecraft will perform these two flyovers at an altitude of 820 feet (250 m), which will be the closest it has ever flown over asteroid Bennu’s surface.

Share

The oldest known meteorite strike?

The uncertainty of science: Scientists think they have identified the oldest meteorite strike known on Earth, dated at 2.33 billion years ago, located in a known impact site in Yarrabubba, Western Australia.

Lead author Dr Timmons Erickson, from Curtin’s School of Earth and Planetary Sciences and NASA’s Johnson Space Center, together with a team including Professor Chris Kirkland, Associate Professor Nicholas Timms and Senior Research Fellow Dr Aaron Cavosie, all from Curtin’s School of Earth and Planetary Sciences, analysed the minerals zircon and monazite that were ‘shock recrystallized’ by the asteroid strike, at the base of the eroded crater to determine the exact age of Yarrabubba.

The team inferred that the impact may have occurred into an ice-covered landscape, vaporised a large volume of ice into the atmosphere, and produced a 70km diameter crater in the rocks beneath.

Professor Kirkland said the timing raised the possibility that the Earth’s oldest asteroid impact may have helped lift the planet out of a deep freeze. “Yarrabubba, which sits between Sandstone and Meekatharra in central WA, had been recognised as an impact structure for many years, but its age wasn’t well determined,” Professor Kirkland said. “Now we know the Yarrabubba crater was made right at the end of what’s commonly referred to as the early Snowball Earth – a time when the atmosphere and oceans were evolving and becoming more oxygenated and when rocks deposited on many continents recorded glacial conditions”.

Associate Professor Nicholas Timms noted the precise coincidence between the Yarrabubba impact and the disappearance of glacial deposits. “The age of the Yarrabubba impact matches the demise of a series of ancient glaciations. After the impact, glacial deposits are absent in the rock record for 400 million years. This twist of fate suggests that the large meteorite impact may have influenced global climate,” Associate Professor Timms said. [emphasis mine]

I truly believe they have determined the approximate age of this impact, making it one of the oldest known impacts. Implying however a “precise” linkage to other only vaguely known climate events, and inferring that the former was the cause of the latter seems to me to be a very large overstatement. Their data might suggest this conclusion, but the uncertainties here demand a bit less certitude..

Share

First asteroid discovered that circles Sun closer than Venus

Astronomers have detected the first asteroid circling the Sun in an orbit that lies entirely inside Venus’s orbit.

In addition to being the first known asteroid with this orbit, the space rock, called 2020 AV2, has the smallest aphelion, or distance from the sun, of any known natural object in the solar system, excluding Mercury. Moreover, by traveling around the sun in a mere 151 days, 2020 AV2 has the shortest orbital period of any known asteroid, according to The Virtual Telescope Project, an online observatory based in Italy.

The reason this is a first is because it is very hard to find such small objects orbiting closer to the Sun than Earth. The glare of the Sun limits what can be spotted. This fact is also why the scientists are unsure of the size of 2020 AV2.

Share

Stardust found in meteorite older than Earth

Scientists studying what they think is grains of stardust in a meteorite the hit the Earth in 1969 have discovered the oldest material ever found on Earth, material that is actually older than the Earth itself.

The meteorite, dubbed the Murchison meteorite after the nearest city in Australia where it landed, has been a treasure trove of information for planetary scientists because so much of it was recovered right after impact.

About 30 years ago it was found that the rocks housed “presolar grains” – tiny grains of silicon carbide older than the Sun. But their exact age hadn’t been determined until now.

To figure that out, the researchers on the new study measured how long these presolar grains had been exposed to cosmic rays. These high-energy particles flit around space and can pass through solid matter, creating new elements inside the existing minerals as they interact with them. That means the scientists can measure the amount of these new elements in the grains to determine how long they were floating around in space – and, ultimately, how old they are.

In doing so, the team found that most of the grains were between 4.6 and 4.9 billion years old. The Sun itself is at the younger end of that range, at 4.6 billion years old, while the Earth didn’t form until 4.5 billion years ago.

But the oldest of the grains were dated to more than 5.5 billion years, making them the oldest known material on Earth. The team says that the history of these grains could be traced back even further, to the stars that birthed them some 7 billion years ago. According to the researchers, this finding suggests that our galaxy went through a period of intense star formation around that time.

Obviously there are uncertainties with this result, though their age estimates are quite reasonable and largely robust.

Share

Probe to visit 8 asteroids, not 7

Scientists developing the Lucy mission to visit seven Trojan asteroids that share an orbit with Jupiter have found an eighth satellite they will also be able to visit.

This first-ever mission to the Trojans was already going to break records by visiting seven asteroids during a single mission. Now, using data from the Hubble Space Telescope (HST), the Lucy team discovered that the first Trojan target, Eurybates, has a satellite. This discovery provides an additional object for Lucy to study.

“If I had to bet that one of our destinations had a satellite, it would have been this one,” said SwRI’s Hal Levison, principal investigator of the mission. “Eurybates is considered the largest remnant of a giant collision that occurred billions of years ago. Simulations show that asteroid collisions like the one that made Eurybates and its family often produce small satellites.”

The mission is targeting a 2021 launch date.

Share

The importance of small telescopes to science and civilization

The main cluster of telescopes, on Mount Lemmon
Largest cluster of telescopes on Mount Lemmon, six visible with three just out of view.

On December 11, 2019 I was kindly given a personal tour by Alan Strauss, director of the Mount Lemmon Sky Center, of the telescopes located on the mountaintops of the Santa Catalina Mountains overlooking Tucson. Strauss runs the educational outreach program for the University of Arizona astronomy department and the Steward Observatory, both of which operate the mountaintop facility.

The telescopes, numbering almost a dozen, are in two groups, two telescopes on the peak of Mount Bigelow and the rest clustered on the higher peak of Mount Lemmon. None are very gigantic by today’s standards, with their primary mirrors ranging in size from 20- to 61-inches. For comparison, the largest operating telescope in the world on the Canary Islands is 409 inches across. Hubble has a 94-inch mirror. And the new giant telescopes under design or being built have mirrors ranging from 842 inches (Giant Magellan) to 1,654 inches (European Extremely Large Telescope).

Thus, the small telescopes in the Santa Catalinas generally don’t make the news. They are considered passe and out-of-date, not capable of doing the kind of cutting edge astronomy that all the coolest astronomers hunger for.

Yet, without them, we likely would not have future astronomers. » Read more

Share

OSIRIS-REx team picks primary sample site

Four candidate landing sites
Click for full image.

The OSIRIS-REx science team has picked the site they have dubbed Nightingale as the primary landing site where they will attempt to obtain a sample from the asteroid Bennu in the summer of 2020. The back-up site is Osprey at the equator.

I have embedded the replay of the NASA live stream of the press event below the fold. The first 21 minutes of the video are an overview of the mission, leading up to the announcement by Dante Lauretta, OSIRIS-REx’s principal investigator. He notes then that the site “does have some hazards” but they chose it for its “scientific value.” While its higher latitude location has some advantages, it also makes it more difficult for landing. The one large boulder there, which Lauretta calls “Mt Doom,” also carries risk for the touch-and-go operations.

The back-up site, Osprey, is on the equator with less hazards, but will present more problems obtaining the tiny-sized particles the sample grab equipment was designed to get.

Not that this matters, but if I have been in a betting pool I would have won, since Nightingale has been my guess for which site they’d pick since early November.
» Read more

Share

OSIRIS-REx completes reconnaissance of four candidate sample sites

Four candidate landing sites
Click for full image.

OSIRIS-REx has completed its high resolution reconnaissance of the four candidate sites on the asteroid Bennu, chosen for possible sample capture during touch-and-go operations planned for the summer of 2020.

In the next few days the science team will decide which of these four sites, shown above, will be the primary and back-up landing locations. The decision however appears challenging, based on the information gathered.

Bennu has also made it a challenge for the mission to identify a site that won’t trigger the spacecraft’s safety mechanisms. During Recon A, the team began cataloguing Bennu’s surface features to create maps for the Natural Feature Tracking (NFT) autonomous navigation system. During the sample collection event, the spacecraft will use NFT to navigate to the asteroid’s surface by comparing the onboard image catalog to the navigation images it will take during descent. In response to Bennu’s extremely rocky surface, the NFT system has been augmented with a new safety feature, which instructs it to wave-off the sampling attempt and back away if it determines the point of contact is near a potentially hazardous surface feature. With Bennu’s building-sized boulders and small target sites, the team realizes that there is a possibility that the spacecraft will wave-off the first time it descends to collect a sample.

Based on the information at the link, plus the presentation by Dante Lauretta, OSIRIS-REx’s principal investigator, given at the asteroid conference I attended in November, I suspect that Nightingale will be primary landing site.

Regardless, it appears the science team has recognized that the landing will difficult, and will likely require multiple attempts before the spacecraft’s navigation system lets it happen.

Share

Hayabusa-2 fires main ion engines for return to Earth

After spending two weeks testing its main ion engines just beyond the gravitational sphere of influence of the asteroid Ryugu, Japanese engineers today initiated full engine operation, beginning the spacecraft’s journey back to Earth.

Hayabusa-2 is expected to return to Earth space in December 2020, where it will release a small capsule containing the two samples it obtained of Ryugu will be released to land on Earth and be recovered. At that point, if Hayabusa-2 is still in good condition it will be available to send to other locations in the solar system.

Share

Hayabusa-2 begins journey back to Earth

The Hayabusa-2 science team has fired up the spacecraft’s ion engine to leave the asteroid Ryugu and began its begins journey back to Earth.

It will take about six days to exit the gravitational sphere of influence of Ryugu. During that time period they will be continually releasing real time images of the asteroid from the spacecraft’s navigation camera, as it slowly gets farther away.

In mid-December they will fire the spacecraft’s main engines for an arrival near Earth in late 2020. At that point the small return capsule holding the samples from Ryugu will separate and land in the Australian desert. Hayabusa-2, still operational, might then be given a new subsequent mission.

Share

New Horizons team renames “Ultima Thule” to “Arrokoth”

The New Horizons team has renamed the Kuiper Belt object that the spacecraft flew past on January 1, 2019 from its informal nickname of “Ultima Thule” to “Arrokoth,” which means “sky” in Powhatan/Algonquian language.

This official, and very politically correct, name has apparently gotten the stamp of approval from the IAU.

In accordance with IAU naming conventions, the discovery team earned the privilege of selecting a permanent name for the celestial body. The team used this convention to associate the culture of the native peoples who lived in the region where the object was discovered; in this case, both the Hubble Space Telescope (at the Space Telescope Science Institute) and the New Horizons mission (at the Johns Hopkins Applied Physics Laboratory) are operated out of Maryland — a tie to the significance of the Chesapeake Bay region to the Powhatan people.

“We graciously accept this gift from the Powhatan people,” said Lori Glaze, director of NASA’s Planetary Science Division. “Bestowing the name Arrokoth signifies the strength and endurance of the indigenous Algonquian people of the Chesapeake region. Their heritage continues to be a guiding light for all who search for meaning and understanding of the origins of the universe and the celestial connection of humanity.” [emphasis mine]

It is a good name, especially because its pronunciation is straight-forward, unlike the nickname.

The blather from Glaze above, however, is quite disingenuous. The Algonquian people have had literally nothing to do with the modern scientific quest for “meaning and understanding of the origins of the unverse.” They were a stone-age culture, with no written language. It was western civilization that has made their present lives far better. And it was the heritage of western civilization, not “the indigenous Algonquian people” that made the New Horizons’ journey possible. Without the demand for knowledge and truth, as demanded by western civilization, we would still not know that Arrokoth even existed.

Share

Bennu & Ryugu: Two very old and strange asteroids

Bennu as seen by OSIRIS-REx
Bennu’s equatorial ridge. Click for full image.

This week the science team operating the OSIRIS-REx spacecraft at the asteroid Bennu hosted a joint conference in Tucson, Arizona, with the scientists operating the Hayabusa-2 spacecraft at the asteroid Ryugu. Both gave up-to-date reports on the science so far obtained, as well as outlined upcoming events. I was fortunate enough to attend.

First an overview. Both Bennu and Ryugu are near earth asteroids, with Bennu having an orbit that might even have it hit the Earth in the last quarter of 2100s. Both are very dark, and are rubble piles. Both were thought to be of the carbonaceous chondrite family of asteroids, sometimes referred to as C-type asteroids. This family, making up about 75% of all asteroids, includes a bewildering collection of subtypes (B-types, F-types, G-types, CI, CM, CV, CH, CB, etc), all of which were initially thought to hold a lot of carbon. We now know that only a few of these categories, the CI and CM for example, are carbon rich.

Even so, we actually know very little about these types of asteroids. They are very fragile, so that any that reach the Earth’s surface are not a good selection of what exists. About 90% of the material gets destroyed in the atmosphere, with the remnant generally coming from the innermost core or more robust nodules. We therefore have a biased and limited sample.

It is therefore not surprising that the scientists are finding that neither Bennu nor Ryugu resembles anything else they have ever seen. Both have aspects that resemble certain types of carbonaceous chondrite asteroids, but neither provides a very good fit for anything.
» Read more

Share

Smallest spherical planet so far found

Hygiea

A new image of the asteroid Hygiea has revealed that this main belt object is actually spherical, making it the smallest spherical asteroid so far discovered and suggesting that it could be defined as a planet.

The image, taken by the Very Large Telescope (VLT) in Chile, is to the right. The asteroid was first discovered in 1849 and is the fourth largest in the asteroid belt, after Ceres, Pallas, and Vesta, with a diameter of 267 miles.

The image once again challenges the definition of what makes a planet. It also makes difficult the vague term “dwarf planet.” At what point does a dwarf become a full planet? This has never been clarified, which is why I tend to avoid using the term dwarf planet.

In my many interviews of planetary scientists, they generally dismiss the IAU’s poor definition of a planet and define a planet as anything that has settled into a spherical shape. In the case of Hygiea, that seems to apply.

Share

Hayabusa-2 releases last mini-lander/rover to Ryugu

The Hayabusa-2 science team today released their last mini-lander, dubbed MINERVA-II2, toward Ryugu, with an expected landing expected no later than October 8.

After MINERVA-II2 lands, it will do the same as the first, operate for about two days on the surface, moving by a series of bounces/rolls and taking close-up pictures of the surface as it does so.

Share

Planet X a small black hole?

In one of the wilder theories attempting to explain the orbits of the outer objects found beyond Neptune, two physicists have proposed that the reason Planet X has not been located is because it might be a small black hole.

Previous studies have suggested Planet Nine, which some astronomers refer to as “Planet X,” has a mass between five and 15 times that of Earth and lies between 45 billion and 150 billion kilometers from the sun. At such a distance, an object would receive very little light from the sun, making it hard to see with telescopes.

To detect objects of that mass, whether planets or black holes, astronomers can look for weird blobs of light formed when light “bends” around the object’s gravitational field on its journey through the galaxy (simulated image above). Those anomalies would come and go as objects move in front of a distant star and continue in their orbit.

But if the object is a planet-mass black hole, the physicists say, it would likely be surrounded by a halo of dark matter that could stretch up to 1 billion kilometers on every side. And interactions between dark matter particles in that halo—especially collisions between dark matter and dark antimatter—could release a flash of gamma rays that would betray the object’s presence, the researchers propose in a forthcoming paper posted on the preprint server arXiv.

Anything is possible, but some things are certainly less likely than others. If these scientists turn out to be right, however, they will have achieved one of the biggest coups in the history of science.

And yes, the undiscovered planet out there should be referred to as “Planet X”, not “Planet Nine.” Not only is Pluto a planet, so are a lot of other objects in the solar system that up to recently were not considered so.

Share

Astronomer: Look for monolith on co-orbiting asteriods

According to one astronomer in a paper published this week, the most likely place to find alien artifacts would be on the co-orbital asteroids, objects whose orbit is very similar to the Earth and thus always nearby but mostly unseen.

In this context, a co-orbital is an asteroid that goes around the Sun on the same, or similar, orbital path to Earth. Co-orbital objects approach Earth very closely every year at distance is much shorter than anything except the moon.

Consequently, co-orbitals could be a great place to watch Earth from. Not only would any alien probes on co-orbital objects be concealed, but they would also be anchored and able to access solar energy. They could possibly sustain themselves for many thousands of years.

According to this paper, if aliens have visited the solar system in the past they would place their long-term alien probes on such an asteroid, or even give it a comparable co-orbit. And if we look and don’t find anything, that would strongly imply that we are alone in the universe.

Fun stuff, but need I say that not finding alien artifacts at these locations proves nothing.

Hat tip Jeff Bliss.

Share

Hayabusa-2 completes rehearsal for MINERVA-II drop

Hayabusa-2 has successfully completed its rehearsal for its planned drop of its last MINERVA-II bouncer/rover, releasing two reflective targets in order to track how they spiral down to the surface of Ryugu.

Hayabusa 2’s cameras will track the movement of the two navigation aids as they fly in space around Ryugu over the next several days. Scientists expect Ryugu’s tenuous gravity will pull the target markers to the asteroid’s surface within a week.

The release of that last bouncer is now expected in about a month. After spending time obtaining the data from that drop, Hayabusa-2 will then head back to Earth by the end of the year.

Share

The never-ending snowstorm circling Saturn

New data suggests that the water being spewed out of Enceladus’s tiger stripes is depositing so much snow and ice on Saturn’s three inner moons, Mimas, Enceladus and Tethys, that these moons, as well as Enceladus, are about twice as bright in radar than previously thought.

Dr Le Gall and a team of researchers from France and the US have analysed 60 radar observations of Saturn’s inner moons, drawing from the full database of observations taken by the Cassini mission between 2004 and 2017. They found that previous reporting on these observations had underestimated the radar brightness by a factor of two.

Unprotected by any atmospheres, Saturn’s inner moons are bombarded by grains of various origins which alter their surface composition and texture. Cassini radar observations can help assess these effects by giving insights into the purity of the satellites’ water ice.

The extreme radar brightness is most likely related to the geysers that pump water from Enceladus’s internal ocean into the region in which the three moons orbit. Ultra-clean water ice particles fall back onto Enceladus itself and precipitate as snow on the other moons’ surfaces.

Dr Le Gall, of LATMOS-UVSQ, Paris, explained: “The super-bright radar signals that we observe require a snow cover that is at least a few tens of centimetres thick. However, the composition alone cannot explain the extremely bright levels recorded. Radar waves can penetrate transparent ice down to few meters and therefore have more opportunities to bounce off buried structures. The sub-surfaces of Saturn’s inner moons must contain highly efficient retro-reflectors that preferentially backscatter radar waves towards their source.”

While the new results suggest that the surfaces of these moons are much brighter that expected, I find the circumstances they describe far more fascinating: a never-ending snow storm in the orbits around Saturn and landing continually on these moons.

My, isn’t the universe wonderful?

Share

Stony-iron asteroid caused flash on Jupiter in August

According to an analysis of the data obtained from the light flash that occurred when an object hit Jupiter on August 7, scientists have estimated its probably make-up, mass, and size.

They estimate from the energy released by the flash that the impactor could have been an object around 12-16 metres in diameter and with a mass of about 450 tons that disintegrated in the upper atmosphere at an altitude of about 80 kilometres above Jupiter’s clouds. Sankar and Palotai’s models of the light-curve for the flash suggest the impactor had a density typical of stony-iron meteors, indicating that it was a small asteroid rather than a comet.

Their conclusions are strengthened because they were able to compare this flash with five other similar but not as bright flashes, all detected since 2010.

These recent detections, all by amateurs, are because of the higher quality equipment now available to ordinary people, including the use of computers and remote operation. This technology is making it possible for amateurs to discover things that once only professionals could find.

Share

First high quality image of interstellar comet

Comet Borisov
Click for full image.

The Gemini Observatory on Mauna Kea has successfully taken the first high resolution image of comet C_2019 Q4, unofficially Comet Borisov (after its discoverer), the first interstellar comet ever discovered.

The image to right, cropped to post here, is that image. It clearly shows the growth of a coma and possible tail, indicating that as it is approaching the Sun it is releasing material from its surface.

Right now the comet is visually very close to the Sun, when looked at from the Earth, making observations difficult. As in the next few months it drops towards its closest approach of the Sun, and the Earth circles around in its own orbit, the viewing angle will improve.

Share

Interstellar comet discovered?

An amateur astronomer has discovered what appears right now to be an interstellar comet making its approach into the solar system.

[I]mages show that the incoming object sports a faint but distinct coma and the barest hint of a tail — something ‘Oumuamua lacked — and thus appears to be a comet. Astronomers are no doubt eager to get spectra of the new find to determine what compounds might be escaping from its surface.

Based on current observations, C/2019 Q4’s eccentricity is about 3.2 — definitely hyperbolic. Objects on hyperbolic orbits are unbound to the Sun. They’re most likely to hail from beyond the solar system, flying in from great distances to pay our neighborhood a brief visit before heading off for parts unknown.

If this result holds up, astronomers have an unprecedented opportunity to study a potentially interstellar object in great detail over a long span of time. Based on the comet’s current magnitude (~18) and distance from the Sun (2.7 a.u.), it appears to be a fairly large object — perhaps 10 km or more across, depending on the reflectivity of its surface.

There remains a great deal of uncertainty about comet’s path, which will be better resolved with time and better data.

If it is a comet from beyond the solar system, it will be a spectacular goldmine for scientists, because its coma and tail will allow them to gather a great deal of information about its make-up, far more than they were able to gather about Oumuamua.

Share

Hayabusa-2 in safe mode for one day on August 29

Japan’s Hayabusa-2 space probe automatically entered safe mode for one day on August 29, causing engineers to postpone a planned operation set for Sept 5.

Hayabusa2 is equipped with four reaction wheels that are used to control the posture of the spacecraft, and posture control is usually performed using three of these reaction wheels. On August 29, the back-up reaction wheel that has not been used since October last year was tested, and an abnormal value (an increased torque) as detected. The spacecraft therefore autonomously moved into the Safe-Hold state. Details of the cause of the abnormal torque value are currently under investigation. On August 30, restoration steps were taken and the spacecraft returned to normal. However, as the spacecraft moved away from the home position due to entering Safe-Hold, we are currently having to return to the home position. We will return to the home position this weekend.

The attitude of the spacecraft is controlled by three reaction wheels as before. Entering the Safe-Hold state is one of the functions employed to keep the spacecraft safe, which means that procedures have worked normally.

In this case it is very clear that this event actually demonstrated that the spacecraft’s systems are operating properly to prevent it from becoming lost. However, the event also underlined the urgency of getting its samples from the asteroid Ryugu back to Earth.

Share

OSIRIS-REx’s four candidate landing sites

The OSIRIS-REx engineering team has released a short video that flies over in close-up, showing the spacecraft’s four candidate sites on the asteroid Bennu, one of which will be where they will do a touch-and-go sample grab.

They continue to accumulate data on the four sites, all of which pose issues and risks because of nearby boulders and the looseness of Bennu’s rubble pile make-up.

Though all the sites are being considered, my sources in the industry suggest that the two dubbed Sandpiper and Nightingale are being favored. I like Osprey, because it is inside a crater and looks clear, but then, what do I know?

Share

Arecibo gets $19 million NASA research/education grant

The Arecibo Observatory in Puerto Rico was today awarded an $19 million NASA research/education grant for studying near Earth asteroids.

NASA awarded the University of Central Florida (which manages the site on behalf of National Science Foundation) the four-year grant to observe and characterize near-Earth objects (NEO) that pose a potential hazard to Earth or that could be candidates for future space missions.

…The award also includes money to support STEM education among high school students in Puerto Rico. The Science, Technology And Research (STAR) Academy brings together 30 local high-school students per semester once a week for 16 classes to learn about science and research at the observatory.

This, plus the recent NSF grant, will keep the telescope operating for at least the next few years.

Share

Results from tiny MASCOT lander on Ryugu

The scientists in charge of the tiny MASCOT lander dropped from Japan’s Hayabusa-2 spacecraft today released the results from the lander’s short seventeen hour observations of the surface of Ryugu.

They found that the asteroid has two different types of rocks (why is a mystery) and practically no dust.

Ralf Jaumann and his team were particularly surprised by the lack of dust: “Ryugu’s entire surface is littered with boulders, but we have not discovered dust anywhere. It should be present, due to the bombardment of the asteroid by micrometeorites over billions of years, and their weathering effect. However, as the asteroid has very low gravity – only one-sixtieth of that experienced on Earth’s surface – the dust has either disappeared into cavities on the asteroid or has escaped into space. This gives an indication of the complex geophysical processes occurring on the surface of this small asteroid.”

They also confirmed that the asteroid is a very fragile rubble pile.

“If Ryugu or another similar asteroid were ever to come dangerously close to Earth and an attempt had to be made to divert it, this would need to be done with great care. In the event that it was impacted with great force, the entire asteroid, weighing approximately half-a-billion tonnes, would break up into numerous fragments. Then, many individual parts weighing several tonnes would impact Earth,” says Jaumann, who is supervising the MASCam experiment, interpreting the observations. The asteroid is very similar to carbonaceous meteorites found on Earth, which date back 4.5 billion years. With an average density of just 1.2 grams per cubic centimetre, Ryugu is only a little ‘heavier’ than water ice. But as the asteroid is made up of numerous pieces of rock of different sizes, this means that much of its volume must be traversed by cavities, which probably makes this diamond-shaped body extremely fragile.

MASCOT was another example of a cubesat demonstrating that these tiny spacecraft can do very sophisticated science.

Share

Japan’s plan for returning Hayabusa-2’s Ryugu samples to Earth

Japan’s today provided an update on what it has done to prepare the location where Hayabusa-2’s samples from the asteroid Ryugu will land on Earth.

The landing site is in the Woomera Prohibited Area (WPA) in the outback of southern Australia. Japan has already signed an agreement with that country for the recovery, as well as done preliminary surface work

The recovery site is an Australian Government prohibited area and is not accessible to the public. As part of the preparatory work, a field survey of the proposed recovery site in the WPA was conducted with permission from the Australian Government. This preparatory work confirmed the suitability of both the proposed recovery site and the candidate site for the antenna station that will search for the capsule.

The landing of the recovery capsule is now scheduled for late in 2020.

Share

OSIRIS-REx team picks four finalist sample return sites on Bennu

After months of photographing and analyzing the very rocky-shrewn surface of the rubble-pile asteroid Bennu, the OSIRIS-REx team has chosen four finalist sites, one of which they will do a touch-and-go sample grab.

This fall, OSIRIS-REx will begin detailed analyses of the four candidate sites during the mission’s reconnaissance phase. During the first stage of this phase, the spacecraft will execute high passes over each of the four sites from a distance of 0.8 miles (1.29 km) to confirm they are safe and contain sampleable material. Closeup imaging also will map the features and landmarks required for the spacecraft’s autonomous navigation to the asteroid’s surface. The team will use the data from these passes to select the final primary and backup sample collection sites in December.

The second and third stages of reconnaissance will begin in early 2020 when the spacecraft will perform passes over the final two sites at lower altitudes and take even higher resolution observations of the surface to identify features, such as groupings of rocks that will be used to navigate to the surface for sample collection. OSIRIS-REx sample collection is scheduled for the latter half of 2020, and the spacecraft will return the asteroid samples to Earth on Sept. 24, 2023.

They given the four sites the names Nightingale, Kingfisher, Osprey and Sandpiper.

Share

Movie of Hayabusa-2’s 2nd Ryugu touch-and-go

The Hayabusa-2 science team has released a short movie showing the spacecraft’s second touch-and-go sample grab on the surface of Ryugu.

The movie is available at the link above, or here.

From the burst of material that flies off the surface at touchdown, it is very clear why the science team was so worried about damaging Hayabusa-2 during this event.

Share

Possibility of meteorites from bright fireball in Ontario

Astronomers were successfully able to track and photograph a bright fireball over Canada early today, and think it is strongly possible that pieces of it might have hit the ground.

Preliminary results indicate that the fireball first became visible just south of Oshawa over Lake Ontario at an altitude of 93 km. It traveled over Clarington and passed just west of Peterborough before extinguishing just west of Bancroft. The fireball rivaled the full moon in brightness and had a number of bright flares near the end of its flight. The meteoroid was roughly the size of a small beachball (approx. 30cm in diameter) and likely dropped a small number of meteorite fragments in the tens to hundreds of grams size-range on the ground.

Brown and his collaborators at Western and the Royal Ontario Museum are interested in connecting with people from the area of the potential fall, who may have heard anything unusual, or who may have found possible meteorites.

…Meteorites can be recognized by their dark, often scalloped exterior. Usually they will be denser than a ‘normal’ rock and will often be attracted to a magnet due to their metal content. Meteorites are not dangerous, but if recovered, it is best to place them in a clean plastic bag or wrap them in aluminum foil. They should also be handled as little as possible to help preserve their scientific value. In Canada, meteorites belong to the owner of the land upon which they are found. If individuals plan to search, they should always obtain permission of the land-owner before venturing onto private land.

If you live up in that neck of the woods, take a look around. You might find something.

Share

Hayabusa-2: Carbon-rich asteroids too delicate to reach Earth surface

New data from Hayabusa-2 has confirmed the long-held suspicions of astronomers that the reason they find so few fragments of C-class asteroids, such as Ryugu, on Earth is because they are too delicate to reach the Earth’s surface.

Ryugu and other asteroids of the common ‘C-class’ [chondritic] consist of more porous material than was previously thought. Small fragments of their material are therefore too fragile to survive entry into the atmosphere in the event of a collision with Earth.

…Until now, only a few chondritic meteorites found on Earth have been identified as fragments of C-type asteroids, which are very common in the Solar System (‘C’ is the chemical symbol for the element carbon). …”We can now confirm that fragments of these asteroids are very likely to break up further when they enter Earth’s atmosphere, and then usually burn up completely. This means that only the largest fragments reach the Earth’s surface,” explains Grott. “That is why meteorites from this type of asteroid are so rarely found on Earth.”

The good news is that, because of this, Earth’s atmosphere offers increased protection from C-type asteroids, which account for 75 percent of all asteroids. …However, further research is necessary to determine the maximum asteroid size for which this atmospheric protection is effective.

It is likely that even the largest rubble-pile C-asteroids will not pose much risk. Even if some pieces reach the Earth’s surface they are probably going to be small and unable to do much harm.

Share
1 2 3 22