A baby star and its protoplanetary disk

A baby star and its protoplanetary disk
Click for originial.

Cool image time! The picture to the right, cropped, rotated, reduced, and sharpened to post here, is the Webb picture of the month from NASA and the European Space Agency (ESA), released today. It shows a baby star about 525 light years away.

IRAS 04302+2247, or IRAS 04302 for short, is a beautiful example of a protostar – a young star that is still gathering mass from its environment – surrounded by a protoplanetary disc in which baby planets might be forming. Webb is able to measure the disc at 65 billion km across – several times the diameter of our Solar System. From Webb’s vantage point, IRAS 04302’s disc is oriented edge-on, so we see it as a narrow, dark line of dusty gas that blocks the light from the budding protostar at its centre. This dusty gas is fuel for planet formation, providing an environment within which young planets can bulk up and pack on mass.

When seen face-on, protoplanetary discs can have a variety of structures like rings, gaps and spirals. These structures can be signs of baby planets that are burrowing through the dusty disc, or they can point to phenomena unrelated to planets, like gravitational instabilities or regions where dust grains are trapped. The edge-on view of IRAS 04302’s disc shows instead the vertical structure, including how thick the dusty disk is. Dust grains migrate to the midplane of the disc, settle there and form a thin, dense layer that is conducive to planet formation; the thickness of the disc is a measure of how efficient this process has been.

The dense streak of dusty gas that runs vertically across this image cocoons IRAS 04302, blotting out its bright light such that Webb can more easily image the delicate structures around it. As a result, we’re treated to the sight of two gauzy nebulas on either side of the disc. These are reflection nebulas, illuminated by light from the central protostar reflecting off of the nebular material.

As this is a baby star, the cones above and below the disk indicate the original spherical cloud, with the upper and lower halves now being pulled downward into a spinning disk, where the solar system is forming.

This image is not simply an infrared Webb image. The Hubble Space Telescope provided the optical view, which the Atacama Large Millimetre/submillimetre Array (ALMA) in Chile provided data in those wavelengths. Note also the many background galaxies. The universe is not only infinite, it is infinitely populated.

Astronomers detect exoplanet shaping the protoplanetary disk surrounding a baby star

Star with disk
Click for original image.

Astronomers using two different instruments on the Very Large Telescope (VLT) in Chile have now directly detected what they think is an exoplanet as it shapes the spiral arms of a baby star’s protoplanetary disk.

In the case of HD 135344B’s disc, swirling spiral arms had previously been detected by another team of astronomers using SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch), an instrument on ESO’s VLT. However, none of the previous observations of this system found proof of a planet forming within the disc.

Now, with observations from the new VLT’s Enhanced Resolution Imager and Spectrograph (ERIS) instrument, the researchers say they may have found their prime suspect. The team spotted the planet candidate right at the base of one of the disc’s spiral arms, exactly where theory had predicted they might find the planet responsible for carving such a pattern.

The newly detected object however might be a brown dwarf and not an exoplanet. More observations are required to reduce the uncertainty.

Astronomers detect first evidence of gas condensing to molecular solids in baby solar system

Baby star with jets of new material
Click for original image.

Using a combination of ground- and space-based telescopes, astronomers have detected the first evidence of the gas and dust surrounding a young star condensing to molecular solids, thus beginning the initial stages of planet formation.

This newborn planetary system is emerging around HOPS-315, a ‘proto’ or baby star that sits some 1300 light-years away from us and is an analogue of the nascent Sun. Around such baby stars, astronomers often see discs of gas and dust known as ‘protoplanetary discs’, which are the birthplaces of new planets. … Their results show that SiO [silicon monoxide] is present around the baby star in its gaseous state, as well as within these crystalline minerals, suggesting it is only just beginning to solidify. “This process has never been seen before in a protoplanetary disc — or anywhere outside our Solar System,” says co-author Edwin Bergin, a professor at the University of Michigan, USA.

…With these data, the team determined that the chemical signals were coming from a small region of the disc around the star equivalent to the orbit of the asteroid belt around the Sun.

The false-color picture to the right, cropped, reduced, and sharpened to post here, was taken by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile. It shows jets blowing out from the central baby star. Orange indicates carbon monoxide, while blue is the silicon monoxide. Initially the astronomers detected these molecules using spectroscopy from the Webb Space Telescope. This ALMA image was then used to identify where these molecules were located in the system.

Webb captures new infrared image of bi-polar jets shooting from baby star

HH 211 as seen by Webb
Click for original image.

Using the Webb Space Telescope, astronomers have taken a new infrared image of the baby star Herbig-Haro 211 (HH 211), known best for the bi-polar jets that shoot out in opposite directions at very great speeds.

That picture is to the right, reduced and sharpened to post here, and has about 5 to 10 times the resolution of previous infrared images.

The image showcases a series of bow shocks to the southeast (lower-left) and northwest (upper-right) as well as the narrow bipolar jet that powers them. …. The inner jet is seen to “wiggle” with mirror symmetry on either side of the central protostar. This is in agreement with observations on smaller scales and suggests that the protostar may in fact be an unresolved binary star.

Earlier observations of HH 211 with ground-based telescopes revealed giant bow shocks moving away from us (northwest) and moving towards us (southeast) and cavity-like structures in shocked hydrogen and carbon monoxide respectively, as well as a knotty and wiggling bipolar jet in silicon monoxide. Researchers have used Webb’s new observations to determine that the object’s outflow is relatively slow in comparison to more evolved protostars with similar types of outflows.

The team measured the velocities of the innermost outflow structures to be roughly 48-60 miles per second (80 to 100 kilometers per second). However, the difference in velocity between these sections of the outflow and the leading material they’re colliding with — the shock wave — is much smaller. The researchers concluded that outflows from the youngest stars, like that in the center of HH 211, are mostly made up of molecules, because the comparatively low shock wave velocities are not energetic enough to break the molecules apart into simpler atoms and ions.

The baby star at the center of these jets, about a 1,000 light years away, is estimated to be only a few ten thousand years old, and presently has a mass less than a tenth of the Sun. With time it will accrete more matter and become a full-sized star.

Baby Star Found on Earth’s Doorstep

A baby star has been found only 27 light years away.

AP Columbae lies in the constellation Columba the Dove, south of the brilliant constellation Orion. “AP Columbae is still contracting under gravity towards the main sequence,” says astronomer Adric Riedel of Georgia State University in Atlanta, whose team measured the star’s parallax—an indication of its distance—and discovered that the star is abnormally luminous. Although the star is dim and red, it’s four times as bright as it should be, because it’s twice the diameter of a main-sequence star of the same color.