A seasonal map of the cloudy parts of Mars

Seasonal map of the cloudy parts of Mars
Click for original image.

Though Mars’ very thin atmosphere (1/thousandth that of Earth) is generally clear, it does have clouds that come and go. A project begun in 2022 using citizen scientists to identify these clouds and the seasons they appear the most, dubbed Cloudspotting on Mars, has now published its first paper, available here.

The graph to the left, Figure 9 in the paper, shows two seasonal Mars maps, one indicating the daytime seasonal frequency of clouds and the other their nightime frequency. From the paper:

The seasonal evolution of all clouds as a function of latitude for both daytime and nighttime are shown in Fig. 9. During the clear season until [mid-summer in the northern hemisphere] … there are several regions where clouds occur frequently: in the equatorial region (annotated as 1), at mid-latitudes (2), in the southern polar region (3), and to a lesser extent in the northern polar region [at the start of summer]. From [late fall to mid-autumn in the north], daytime clouds occur primarily at mid-latitudes, but are observed at nearly all latitudes between 70°S and 60°N (4). At night, there is one broad population from 30°S to 30°N (clouds are more frequent in the equatorial region at night), but [in autumn], clouds occur frequently between 30°N and 50°N as well. [In mid-spring] the number of observed nighttime clouds increases in the southern hemisphere, especially near 50°S. There is a strong decrease in the number of peaks just before [the late northern autumn and the late southern sping] at nearly all latitudes except around 50°S and 20°N at night. [Once northern winter arrives], clouds are observed between about 60°S and 60°N as well as both polar regions, although nighttime clouds between 0°N and 30°N occur relatively less frequently.

The low-latitude clouds during the clear season (1), which are observed more frequently at night, occur at high altitudes, 65–80 km during the day and 55–70 km at night; this is the aphelion equatorial mesospheric cloud population studied in depth by Slipski et al. (2022) and in which previous observations have spectrally confirmed CO2-ice.

Martian seasons

The bracketed words indicating seasons above replace the longitudal numbers the scientists use to indicate the seasons, and are used on these two graphs. The figure to the right shows what the longitude numbers represent in the graphs’ X-axis.

The project continues if any of my readers want to join in.

Curiosity’s most recent cloud campaign

A cloud on Mars
Click for original image.

On January 30, 2023 I posted the picture to the right, taken by the high resolution camera on the Mars rover Curiosity. The picture was part of their ongoing cloud survey, running from January to March ’23 and using the rover’s hi-res camera to look for clouds during twilight. Today the rover science team issued a press release describing some of the results of that campaign. For example, on February 2nd the rover captured a sunset with sun rays, sunlight illuminating the bottom of clouds after the Sun has set. The release also provided this explanation for the cloud on the right.

In addition to the image of sun rays, Curiosity captured a set of colorful clouds shaped like a feather on Jan. 27. When illuminated by sunlight, certain types of clouds can create a rainbowlike display called iridescence. “Where we see iridescence, it means a cloud’s particle sizes are identical to their neighbors in each part of the cloud,” said Mark Lemmon, an atmospheric scientist with the Space Science Institute in Boulder, Colorado. “By looking at color transitions, we’re seeing particle size changing across the cloud. That tells us about the way the cloud is evolving and how its particles are changing size over time.”

In the case of Mars, the clouds are not made of liquid water droplets like on Earth, but ice particles, sometimes water and sometimes dry ice.

Scientists want your help cataloging the clouds on Mars

In order to fully identify all the clouds seen in the sixteen years of data collected by the cloud instrument on Mars Reconnaissance Orbiter (MRO), scientists have now organized a citizen-scientist project to catalogue those clouds.

The project revolves around a 16-year record of data from the agency’s Mars Reconnaissance Orbiter (MRO), which has been studying the Red Planet since 2006. The spacecraft’s Mars Climate Sounder instrument studies the atmosphere in infrared light, which is invisible to the human eye. In measurements taken by the instrument as MRO orbits Mars, clouds appear as arches. The team needs help sifting through that data on Zooniverse, marking the arches so that the scientists can more efficiently study where in the atmosphere they occur.

You can join up by going here.

Making Martian clouds — on Earth.

Making Martian clouds — on Earth.

They’ve recreated Mars-like conditions within a three-story-tall cloud chamber in Germany, adjusting the chamber’s temperature and relative humidity to match conditions on Mars — essentially forming Martian clouds on Earth. While the researchers were able to create clouds at the frigid temperatures typically found on Mars, they discovered that cloud formation in such conditions required adjusting the chamber’s relative humidity to 190 percent — far greater than cloud formation requires on Earth. The finding should help improve conventional models of the Martian atmosphere, many of which assume that Martian clouds require humidity levels similar to those found on Earth.

The required high humidity seems very counter-intuitive, considering Mars’s presently dry environment. I suspect it implies that there are other unknown factors about the Martian atmosphere that the scientists have not yet considered.

The sky is falling.

The sky is falling.

Over the last 10 years, the height of clouds has been shrinking, according to new research. The time frame is short, but if future observations show that clouds are truly getting lower, it could have an important effect on global climate change. Clouds that are lower in the atmosphere would allow Earth to cool more efficiently, potentially offsetting some of the warming caused by greenhouse gases.

New NASA Data Blow Gaping Hole In Global Warming Alarmism

The headline says it all: New NASA data blow gaping hole in global warming alarmism.

Scientists on all sides of the global warming debate are in general agreement about how much heat is being directly trapped by human emissions of carbon dioxide (the answer is “not much”). However, the single most important issue in the global warming debate is whether carbon dioxide emissions will indirectly trap far more heat by causing large increases in atmospheric humidity and cirrus clouds. Alarmist computer models assume human carbon dioxide emissions indirectly cause substantial increases in atmospheric humidity and cirrus clouds (each of which are very effective at trapping heat), but real-world data have long shown that carbon dioxide emissions are not causing as much atmospheric humidity and cirrus clouds as the alarmist computer models have predicted.

The new NASA Terra satellite data are consistent with long-term NOAA and NASA data indicating atmospheric humidity and cirrus clouds are not increasing in the manner predicted by alarmist computer models. The Terra satellite data also support data collected by NASA’s ERBS satellite showing far more longwave radiation (and thus, heat) escaped into space between 1985 and 1999 than alarmist computer models had predicted. Together, the NASA ERBS and Terra satellite data show that for 25 years and counting, carbon dioxide emissions have directly and indirectly trapped far less heat than alarmist computer models have predicted. [emphasis mine]