Tag Archives: Comet 2I/Borisov

More data from interstellar Comet 2I/Borisov as it zipped past Sun in December

Astronomers studying interstellar Comet 2I/Borisov as it zipped past Sun in December have found that while in many ways it resembled solar system comets, the differences were revealing.

During its trip through the solar system, the comet lost nearly 61 million gallons (230 million liters) of water — enough to fill over 92 Olympic-size swimming pools. As it moved away from the Sun, Borisov’s water loss dropped off — and did so more rapidly than any previously observed comet. Xing said this could have been caused by a variety of factors, including surface erosion, rotational change and even fragmentation. In fact, data from Hubble and other observatories show that chunks of the comet broke off in late March.

…Swift’s water production measurements also helped the team calculate that Borisov’s minimum size is just under half a mile (0.74 kilometer) across. The team estimates at least 55% of Borisov’s surface — an area roughly equivalent to half of Central Park — was actively shedding material when it was closest to the Sun. That’s at least 10 times the active area on most observed solar system comets. Borisov also differs from solar system comets in other aspects. For example, astronomers working with Hubble and the Atacama Large Millimeter/submillimeter Array, a radio telescope in Chile, discovered Borisov produced the highest levels of carbon monoxide ever seen from a comet at that distance from the Sun.

Because more of the comet’s entire surface had water ice than seen in solar system comets, it suggests that the comet has never been close to another star before. That the water release dropped off precipitously however also suggests that that surface layer of ice was not very deep.

Share

Interstellar Comet 2I/Borisov has an excess of carbon monoxide

Astronomers using two difference space telescopes have found that Comet 2I/Borisov, the first known interstellar comet, has an abundance of carbon monoxide when compared to solar system comets.

The team used Hubble’s unique ultraviolet sensitivity to spectroscopically detect carbon monoxide gas escaping from comet Borisov’s solid comet nucleus. Hubble’s Cosmic Origins Spectrograph observed the comet on four separate occasions, from Dec. 11, 2019 to Jan. 13, 2020, which allowed the researchers to see the object’s chemical composition change quickly, as different ice mixtures, including carbon monoxide, oxygen, and water, sublimated under the warmth of the Sun.

The Hubble astronomers were surprised to find that the interstellar comet’s coma, the gas cloud surrounding the nucleus, contains a high amount of carbon monoxide gas, at least 50% more abundant than water vapor. This amount is more than three times higher than the previously measured quantity for any comet entering the inner solar system. The water measurement was made by NASA’s Neil Gehrels-Swift satellite, whose observations were conducted in tandem with the Hubble study.

Carbon monoxide ice is very volatile. It doesn’t take much sunlight to heat the ice and convert it to gas that escapes from a comet’s nucleus. For carbon monoxide, this activity occurs very far from the Sun, about 11 billion miles away, more than twice the distance of Pluto at its farthest point from the Sun. In contrast, water remains in its icy form until about 200 million miles from the Sun, the approximate distance of the inner edge of the asteroid belt.

However, for comet Borisov, the Hubble measurements suggest that some carbon monoxide ice was locked inside the comet’s nucleus, revealed only when the Sun’s heat stripped away layers of water ice. “The amount of carbon monoxide did not drop as expected as the comet receded from the Sun. This means that we are seeing the primitive layers of the comet, which really reflect what this object is made of,” Bodewits explained. “Because of the abundance of carbon monoxide ice that survived so close to the Sun, we think that comet Borisov comes from a much colder place and from a very different debris disk around a star than our own.”

With solar system comets, the ratios between water and carbon monoxide are the reverse, with much more water detected. They theorize, based on these results, that the comet might have come from a cool red dwarf star, but with the available data that is nothing more than a guess at this point.

Share

Big sections break off of interstellar Comet 2I/Borisov

The uncertainty of science: New observations of the interstellar Comet 2I/Borisov as it exits our solar system indicate that large fragments have recently broken from it, and that the comet might possibly be on the verge of breaking up.

Astronomers have seen evidence of two fragments, but the data suggests these are relatively small compared to the entire comet. On the other hand,

Before perihelion, Jewitt’s analysis of Hubble images showed that Comet Borisov is much smaller than had been thought. The comet’s nucleus is not directly visible, but in the January 10th Astrophysical Journal Letters, Jewitt put its diameter between 0.4 and 1 kilometer. That’s small enough that solar vaporization of surface ices on the side facing the Sun could spin up its rotation beyond gravity’s ability to hold it together.

However, the comet’s size is tricky to estimate, as its surface appears to be emitting so much gas and dust that it obscures the nucleus. The fragment that Jewitt observed is about as bright as the comet itself, but because its surface is so icy and active, he thinks the fragment’s mass is less than 1% of the whole comet. That would make the split more like a side mirror dropping off a car than a car falling apart. Why the fragment split from the comet is unclear, but possibilities include thermal vaporization after new material was exposed, as well as the force from the comet’s spin if it’s spinning as fast as Jewitt suggests.

Whether the comet is about to break up remains unknown. Wouldn’t it be nice if someone was racing to put a mission together to visit it?

Share

New Hubble images of Comet 2I/Borisov

Comet 2I/Borisov taken by Hubble prior to and at its closest approach to Sun
Click for full image.

Scientists today released new images taken by the Hubble Space Telescope of the interstellar object Comet 2I/Borisov. The image on the left was taken prior to the comet’s closest approach to the Sun, while the image on the right was taken during that closest approach. The vertical smeared object to the left in the earlier image is a galaxy that happened to be in the field of view. The blue color of both images is a false color to bring out details.

“Hubble gives us the best upper limit of the size of comet Borisov’s nucleus, which is the really important part of the comet,” said David Jewitt, a UCLA professor of planetary science and astronomy, whose team has captured the best and sharpest look at this first confirmed interstellar comet. “Surprisingly, our Hubble images show that its nucleus is more than 15 times smaller than earlier investigations suggested it might be. Our Hubble images show that the radius is smaller than half-a-kilometer. Knowing the size is potentially useful for beginning to estimate how common such objects may be in the solar system and our galaxy. Borisov is the first known interstellar comet, and we would like to learn how many others there are.”

The first image was taken from a distance of 203 million miles, while the second was taken from 185 million miles. Expect more images in late December, when the comet makes its closest approach to Earth at a distance of 180 million miles.

Share

New image of Comet 2I/Borisov

Comet 2I/Borisov
Click for full image.

Astronomers have taken a new image of the interstellar comet 2I/Borisov. The photograph to the right is that image, with the Earth placed alongside to show scale.

According to van Dokkum the comet’s tail, shown in the new image, is nearly 100,000 miles long, which is 14 times the size of Earth. “It’s humbling to realize how small Earth is next to this visitor from another solar system,” van Dokkum said.

Laughlin noted that 2l/Borisov is evaporating as it gets closer to Earth, releasing gas and fine dust in its tail. “Astronomers are taking advantage of Borisov’s visit, using telescopes such as Keck to obtain information about the building blocks of planets in systems other than our own,” Laughlin said.

The solid nucleus of the comet is only about a mile wide. As it began reacting to the Sun’s warming effect, the comet has taken on a “ghostly” appearance, the researchers said.

The comet will reach its closest point to the Earth, 190 million miles, in early December.

Share