The lingering echo of Comet Shoemaker-Levy in the atmosphere of Jupiter.

The lingering echo of Comet Shoemaker-Levy in the atmosphere of Jupiter.

The Herschel observations, together with heat maps provided by NASA’s Infrared Telescope Facility on Mauna Kea, showed the researchers that the Jovian stratosphere was 20° to 30°F (10° to 15°C) warmer than it would be if completely dry. One question is whether the stratospheric warming results from the gentle, continuous infall of interplanetary dust particles, which would be warmed by sunlight as they linger high up. Cavalié and his colleagues believe IDPs create some of the infrared emission but cannot explain it all. Further, a continuously supplied source would migrate to lower depths, yet most of the emission is too high up, at pressures less than 2 millibars. And while the amount of water is roughly constant across the southern hemisphere, the emission gradually weakens northward until it’s less than half as strong. It’s not simply that Jupiter’s bottom half is hotter — there’s just more water down there. As the researchers note, “At least 95% of the observed water comes from the SL9 comet and subsequent (photo)-chemistry in Jupiter’s stratosphere according to our models, as of today.

Taken together, they conclude, these observations offer “clear evidence that a recent comet … is the principal source of water in Jupiter. What we observe today is a remnant of the oxygen delivery by the comet at 44°S in July 1994.”