Scientists: Quasar data shows time running five times slower in the early universe

The uncertainty of science: According to new research using data from almost 200 quasars collected over the two decades, scientists now believe they have detected the difference between the rate of time now and as we see it in the early universe.

“Looking back to a time when the universe was just over a billion years old, we see time appearing to flow five times slower,” said lead author of the study, Professor Geraint Lewis from the School of Physics and Sydney Institute for Astronomy at the University of Sydney. “If you were there, in this infant universe, one second would seem like one second – but from our position, more than 12 billion years into the future, that early time appears to drag.”

…Professor Lewis worked with astro-statistician Dr Brewer to examine details of 190 quasars observed over two decades. Combining the observations taken at different colours (or wavelengths) – green light, red light and into the infrared – they were able to standardise the ‘ticking’ of each quasar. Through the application of Bayesian analysis, they found the expansion of the universe imprinted on each quasar’s ticking.

“With these exquisite data, we were able to chart the tick of the quasar clocks, revealing the influence of expanding space,” Professor Lewis said.

These results further confirm Einstein’s picture of an expanding universe but contrast earlier studies that had failed to identify the time dilation of distant quasars. [emphasis mine]

I have highlighted the word “exquisite” because it is a favorite buzzword of scientists when they are trying to oversell conclusions that carry many uncertainties. As good as this data might be, it is still incredibly sparse, and the interpretation of it requires many assumptions.

Nonetheless, these results are likely correct, in some manner, because they match well with Einstein’s predictions. It is also most likely that there are many errors and incorrect aspects to those results that the scientists do not yet understand. Above all, confirmation bias remains a concern.

Failed GPS satellites to test Einstein’s theory

Making lemonade from lemons: Scientists are going to repurpose two GPS satellites — launched into wrong orbits and thus useless for GPS — to conduct a test of Einstein’s theory of general relativity.

The satellites, operated by the European Space Agency (ESA), were mislaunched last year by a Russian Soyuz rocket that put them into elliptical, rather than circular, orbits. This left them unfit for their intended use as part of a European global-navigation system called Galileo.

But the two crafts still have atomic clocks on board. According to general relativity, the clocks’ ‘ticking’ should slow down as the satellites move closer to Earth in their wonky orbits, because the heavy planet’s gravity bends the fabric of space-time. The clocks should then speed up as the crafts recede.

On 9 November, ESA announced that teams at Germany’s Center of Applied Space Technology and Microgravity (ZARM) in Bremen and the department of Time–Space Reference Systems at the Paris Observatory will now track this rise and fall. By comparing the speed of the clocks’ ticking with the crafts’ known altitudes — pinpointed within a few centimetres by monitoring stations on the ground, which bounce lasers off the satellites — the teams can test the accuracy of Einstein’s theory.

There actually is little uncertainty here. No one expects this experiment to disprove Einstein’s theory, but the failed spacecraft provide a great opportunity to measure things at an accuracy never previously attempted, which in turn will help improve future GPS design.

Scientist proposes that the superluminal neutrinos are merely measuring the true speed of light

On Thursday physicist Susan Gardner of the University of Kentucky proposed in a preprint on the Los Alamos astro-ph website that the neutrinos measured at CERN that appeared to be going faster than light were merely giving us a much more accurate measure of the speed of light.

This is only one of a plethora of papers published this last week on astro-ph discussing and attacking the CERN neutrino results. I expect the scientists will solve this mystery before too long.

Faster than light?

Can neutrinos travel faster than light? After three years of gathering data, an experiment at CERN says they do, though by only a tiny amount.

[Physicist Antonio] Ereditato says that he is confident enough in the new result to make it public. The researchers claim to have measured the 730-kilometre trip between CERN and its detector to within 20 centimetres. They can measure the time of the trip to within 10 nanoseconds, and they have seen the effect in more than 16,000 events measured over the past two years. Given all this, they believe the result has a significance of six-sigma — the physicists’ way of saying it is certainly correct.

You can download and read a preprint of their paper here.

What I find intriguing about this result, other than its exciting groundbreaking possibilities, is how it illustrates sharply the contrast between normal and healthy science, and the sad and sick state of the field of climate science.
» Read more