Tag Archives: fast radio bursts

New radio telescope discovers many new Fast Radio Bursts

A new radio telescope in Canada, designed to detect the mysterious and as-yet unexplained Fast Radio Bursts (FRB), has in the past year raised the total of known FRBs from 30 to 700, including nine repeating bursts.

This confirms an earlier very preliminary analysis that there were two different types of bursts, those that repeat and those that don’t.

Warning: It is very dangerous to take these results too seriously. A lot of uncertainty exists, including some basic facts about the bursts.

Share

A baffling repeating fast radio burst

Astronomers are baffled by a fast radio burst, a phenomenon that is a mystery in its own right, that also repeats its bursts in what appears to be a regular pattern.

Researchers looking at data from the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB) first spotted this FRB, known as FRB 180916.J0158+65, in 2019. In January 2020, they published a paper in the journal Nature that reanalyzed old data and found more than one burst from FRB 180916.J0158+65. They traced this FRB back to a relatively nearby spiral galaxy. What’s new in this latest paper, published Feb. 3 to the arXiv database, is the regular pattern in the bursts. The FRB, they found, goes through four-day cycles of regular activity, bleating out radio waves into space on an almost hourly basis. Then it goes into a 12-day period of silence. Sometimes the source seems to skip its usual four-day awake periods, or lets out only a single burst. CHIME/FRB is able to watch the FRB only some of the time, they noted, so it’s likely the detector misses many FRBs during the awake period.

At present they have no idea what is causing the pattern, other than a realization that it defies all the theories for explaining the previously discovered fast radio bursts.

Share

Newly discovered repeating fast radio burst breaks rules

The uncertainty of science: Astronomers have discovered the second fast radio burst that also repeats its bursts, and the discovery occurred in a place where such bursts were not expected to occur.

On 19th June 2019, eight telescopes from the European VLBI Network (EVN) simultaneously observed a radio source known as FRB 180916.J0158+65. This source was originally discovered in 2018 by the CHIME telescope in Canada, which enabled the team to conduct a very high resolution observation with the EVN in the direction of FRB 180916.J0158+65. During five hours of observations the researchers detected four bursts, each lasting for less than two thousandths of a second.

…With the precise position of the radio source the team was able to conduct observations with one of the world’s largest optical telescopes, the 8-m Gemini North on Mauna Kea in Hawaii. Examining the environment around the source revealed that the bursts originated from a spiral galaxy named SDSS J015800.28+654253.0, located half a billion light years from Earth. The bursts come from a region of that galaxy where star formation is prominent.

“The found location is radically different from the previously located repeating FRB, but also different from all previously studied FRBs”, explains Kenzie Nimmo, PhD student at the University of Amsterdam. “The differences between repeating and non-repeating fast radio bursts are thus less clear and we think that these events may not be linked to a particular type of galaxy or environment. It may be that FRBs are produced in a large zoo of locations across the Universe and just require some specific conditions to be visible.”

The actual locations of only five such bursts have been identified, so any generalization about their origin or nature seems premature anyway.

The American Astronomical Society (AAS) is having its semi-annual convention right now in Hawaii, which is why we are suddenly having a burst of astronomy-related press announcements.

Share

Astronomers double the number of known fast radio bursts

Using a radio telescope in Australia astronomers have now doubled the number of known fast radio bursts.

Fast radio bursts come from all over the sky and last for just milliseconds. Scientists don’t know what causes them but it must involve incredible energy—equivalent to the amount released by the Sun in 80 years.

“We’ve found 20 fast radio bursts in a year, almost doubling the number detected worldwide since they were discovered in 2007,” said lead author Dr Ryan Shannon, from Swinburne University of Technology and the OzGrav ARC Centre of Excellence.

In other words, only forty bursts total have ever been detected. The data here however suggests that the bursts are coming from very far away and from the early universe, information which will help scientists figure out what is causing them.

Share

Astronomers identify for the first time the source of a fast radio burst

For the first time astronomers have pinned down the location of a fast radio burst (FRBs), short bursts lasting only seconds that were only discovered about a decade ago.

A dim dwarf galaxy 2.5 billion light years from Earth is sending out the mysterious millisecond-long blasts of radio waves, researchers report Wednesday in Nature and Astrophysical Journal Letters. The bursts traverse vast expanses of time and intergalactic space before reaching our planet. “This really is the first ironclad association of a fast radio burst with another astronomical source, so it’s a pretty huge result,” said Duncan Lorimer, an astronomer at West Virginia University who reported the first detection of a fast radio burst (FRB) in 2007.

The uncertainty of science: Only 18 FRBs have been identified since they were first discovered. Until now, it was unclear whether they occurred in our galaxy or beyond, though it was suspected they were coming from other galaxies. This discovery proves that. What remains unknown is what causes the burst, which signals an energy pulse equivalent to that of 500 million suns.

“I am not exaggerating when I say there are more models for what FRBs could be than there are FRBs,” said Cornell astronomer Shami Chatterjee, the lead author of the new Nature paper. Many scientists think the bursts are emitted by distant neutron stars, the super-dense embers of exploded suns. But some believe they must originate in our own galaxy. Still more suggest that FRBs could be caused by cataclysms like a supernova or a collision of two stars. This last theory was compelling because most FRB detections were one-off events — astronomers never spotted more than one flare from a single source.

Today’s announcement was made possible by the fact that the burst itself is repeating. In fact, it is the only FRB so far known to do so, which also means that what they learn about it might not be applicable to the other bursts.

Share

Scientists puzzle over possible connection between a fast radio burst and a gamma ray burst

The uncertainty of science: In trying to explain the relatively new mystery of fast radio bursts (FRB), of which only about 20 have been detected and of which very little is known, scientists are intrigued by a gamma ray burst (GRB) that apparently occurred at the same time and place of one FRB.

Seeing the FRB event in a different wavelength would normally help astronomers better understand the FRB The problem is that this particular GRB only makes the mystery of FRBs more baffling.

One puzzle is that the two signals portray different pictures of the underlying source, which seems to be as much as 10 billion light years (3.2 gigaparsecs) away. Whereas the radio burst lasted just a few milliseconds, the γ-ray signal lasted between two and six minutes, and it released much more energy in total than the radio burst. “We’ve pumped up the energy budget more than a billion times,” says study co-author Derek Fox, an astrophysicist at Penn State.

This has big implications for the FRB’s origin. One leading theory suggests that FRBs are flares from distant magnetars — neutron stars with enormous magnetic fields that could generate short, energetic blasts of energy, and do so repeatedly, as at least one FRB is known to do. Although magnetars are thought to produce γ-rays, they would not emit such high energy and over such a long time, says Fox. “This is a severe challenge for magnetar models,” he says.

Share

A developing new astronomical mystery

Radio astronomers in Australia have recently detected a number of new mysterious radio bursts, dubbed fast radio bursts because of their nature, coming from outside our galaxy whose cause presently has no clear explanation.

An unprecedented double burst recently showed up along with four more of these flashes, researchers report online November 25 at arXiv.org.

Fast radio bursts, first detected in 2007, are bright blasts of radio energy that last for just a few milliseconds and are never seen again. Until now, astronomers had cataloged nine bursts that appeared to originate well outside the Milky Way. Yet, follow-up searches with nonradio telescopes for anything that might be pulsing or exploding keep coming up empty.

This mystery is similar to that of gamma ray bursts (GRBs), which were first discovered in the 1960s. About once a day there would be a short burst of gamma ray energy coming from scattered random directions in the sky, but no other radiation in any other wavelength. For decades astronomers didn’t know if the GRBs were coming from just outside our atmosphere or from billions of light years away. Finally, in the 1990s they pinned their location to the deaths of stars in distant other galaxies. As noted by one scientist at a conference, “GRBs signal the daily formation of a new black hole.”

Fast radio bursts are more intriguing. Because of their wavelengths and random locations on the sky, astronomers seem confident that they are occurring outside the Milky Way. However, in the eight years since their discovery only a handful have been detected, making it extremely difficult to study them. Nonetheless, they are significant because they signal some cataclysmic event far away, likely the death of a star in a way not yet understood or predicted. Finding out what that event is will produce important information about the evolution of our universe.

It just might take decades for this new mystery to be solved. Stay tuned!

Share