Research from DART impact mission determines approximate ages of the asteroid Didymos and its moon Dimorphos

Computer simulation of formation of Dimorphos
Click for full animation

A release this week of new research papers based on data obtained during the impact mission of DART on the asteroid Dimorphos in 2022 has determined the approximate ages of both Dimorphos and the larger asteroid Didumos that it orbits.

Analysis suggested that both Didymos and Dimorphos have weak surface characteristics, which led the team to posit that Didymos has a surface age 40–130 times older than Dimorphos, with the former estimated to be 12.5 million years and the latter less than 300,000 years old.

This research also did a computer simulation that suggests Dimorphos was formed because of Didymos’ fast rotation rate, the fastest asteroid rotation rate so far measured. The spin caused first the development of a ridge on the equator of Didymos, which later literally threw material into space which later coalesced to form the satellite Dimorphus. The graphic to the right is from that simulation.

Other research studied the boulder distribution of Dimorphos, and structural nature of both asteroids.

A European mission, Hera, is scheduled to launch in October 2024 and rendezvous with Didymos and Dimorphos in 2026, obtaining close-up data following the DART 2022 impact.

Hubble spots double tail of debris from DART impact of Dimorphus

Dimorphus double tail
Click for original image.

A series of images taken by the Hubble Space Telescope of the ejecta released when DART crashed into the small 525-foot-wide asteroid Dimorphus has found that debris forming a double tail trailing away from the Sun.

The picture to the right, cropped, reduced, and enhanced to post here, was taken on October 11, 2022 by Hubble, and shows those two tails as close parallel debris trails.

Repeated observations from Hubble over the last several weeks have allowed scientists to present a more complete picture of how the system’s debris cloud has evolved over time. The observations show that the ejected material, or “ejecta,” has expanded and faded in brightness as time went on after impact, largely as expected. The twin tail is an unexpected development, although similar behavior is commonly seen in comets and active asteroids. The Hubble observations provide the best-quality image of the double-tail to date.

Following impact, Hubble made 18 observations of the system. Imagery indicates the second tail formed between 2-8 October 2022.

Though observations by telescope will continue for the years to follow, the real punchline to this event will be when the European probe Hera rendezvouses with the Didymous-Dimorphus pair in 2026 to perform several years of very close observations.

DART’s impact shortened Dimorphus’s orbit around Didymos by 32 minutes

LICIACube Explorer image of DART impact
LICIACube Explorer image just after the DART
impact. Dimorphus is the blob near the top.

After two weeks of analyzing the orbit of Dimorphus around its parent asteroid Didymos, astronomers have determined that the impact of DART on Dimorphus shortened its orbit by 32 minutes.

Prior to DART’s impact, it took Dimorphos 11 hours and 55 minutes to orbit its larger parent asteroid, Didymos. Since DART’s intentional collision with Dimorphos on Sept. 26, astronomers have been using telescopes on Earth to measure how much that time has changed. Now, the investigation team has confirmed the spacecraft’s impact altered Dimorphos’ orbit around Didymos by 32 minutes, shortening the 11 hour and 55-minute orbit to 11 hours and 23 minutes. This measurement has a margin of uncertainty of approximately plus or minus 2 minutes.

Before its encounter, NASA had defined a minimum successful orbit period change of Dimorphos as change of 73 seconds or more. This early data show DART surpassed this minimum benchmark by more than 25 times.

It also appears the ejecta from the impact — much greater than expected — helped propel Dimorphus, a result that I think was also not expected.

Researchers are now shifting to studying the debris and asteroid itself, to better understand what happened as well as the nature of Dimorphus itself. This will also include a European probe dubbed Hera that will launch in 2024 an dvisit both asteroids in 2026.