A fading supernova 650 million light years away

A fading supernova 650 million light years away
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope in March 2024, and shows the fading blue light of a supernova that was first discovered by another survey telescope six weeks earlier. The galaxy, dubbed LEDA 22057, is estimated to be about 650 million light years away.

The supernova is the bright spot in the galaxy’s southeast quadrant near the edge of the galaxy’s bright body. From today’s caption release:

SN 2024PI is classified as a Type Ia supernova. This type of supernova requires a remarkable object called a white dwarf, the crystallised core of a star with a mass less than about eight times the mass of the Sun. When a star of this size uses up the supply of hydrogen in its core, it balloons into a red giant, becoming cool, puffy and luminous. Over time, pulsations and stellar winds cause the star to shed its outer layers, leaving behind a white dwarf and a colourful planetary nebula. White dwarfs can have surface temperatures higher than 100,000 degrees and are extremely dense, packing roughly the mass of the Sun into a sphere the size of Earth.

While nearly all of the stars in the Milky Way will one day evolve into white dwarfs — this is the fate that awaits the Sun some five billion years in the future — not all of them will explode as Type Ia supernovae. For that to happen, the white dwarf must be a member of a binary star system. When a white dwarf syphons material from a stellar partner, the white dwarf can become too massive to support itself. The resulting burst of runaway nuclear fusion destroys the white dwarf in a supernova explosion that can be seen many galaxies away.

The rate in which this supernova fades will help astronomers untangle the processes that cause these gigantic explosions. Though the caption makes it sound as if we know how this happens, we really don’t. There are a lot of assumptions and guesses involved in the description above, based on the limited knowledge astronomers have gathered over the past few centuries looking at many supernovae many millions of light years away.

Astronomers detect baffling blue transient far outside any galaxy

Transient in intergalactic space
Click for original image.

Using a variety of telescopes, astronomers have discovered a baffling short-term object that brightens quickly in blue light and then fades.

What makes this discovery even more baffling is that though other such Luminous Fast Blue Optical Transients (LFBOT) have been discovered, all have been within galaxies, while this new discovery is in intergalactic space, as shown by the red bars in the picture to right, taken by the Hubble Space Telescope and cropped, reduced, and sharpened to post here. From the caption:

[An LFBOT] shines intensely in blue light and evolves rapidly, reaching peak brightness and fading again in a matter of days, unlike supernovae which take weeks or months to dim. Only a handful of previous LFBOTs have been discovered since 2018. The surprise is that this latest transient, seen in 2023, lies at a large offset from both the barred spiral galaxy at right and the dwarf galaxy to the upper left. Only Hubble could pinpoint its location. And, the results are leaving astronomers even more confounded because all previous LFBOTs have been found in star-forming regions in the spiral arms of galaxies. It’s not clear what astronomical event would trigger such a blast far outside of a galaxy.

The frequent discovery of such short term transients in the past decade is because there are now many telescopes dedicated to making daily surveys of the entire sky. In the past such quick events were always missed.