Astronomers track neutrino from galaxy 3.7 billion light years away
Using multiple telescopes astronomers have successfully tracked the source of a neutrino that was detected on September 22 2017 by the IceCube neutrino telescope in Antarctica to a galaxy 3.7 billion light years away.
Because scientists on the IceCube experiment had worked out the path the particle took through their subterranean ice instrument, astronomers knew where in the sky to look for the particle’s source. A string of early observations came up blank, but days later Nasa’s Fermi Gamma-ray Space Telescope spotted the likely source: a flaring “blazar”.
Most galaxies are thought to have spinning supermassive black holes at their centres. But some of these black holes appear to pull in material at ferocious rates, a process that simultaneously sends streams of highly energetic particles out into space. Such galaxies are called blazars, although the term only applies when one of these streams is directed straight at Earth.
The blazar that appears to have sent the neutrino our way lies 3.7bn light years from Earth, just off the left shoulder of the constellation of Orion. While a single detection is not strong evidence, the IceCube scientists went back through their records and found a flurry of neutrinos coming from the same spot over 150 days in 2014 and 2015.
This I think is the first time scientists have linked a neutrino to its source, outside our solar system. Most neutrino detections come from the Sun. That they could trace this one back to a blazar so far away means their neutrino telescopes are now becoming sensitive enough to find and study the neutrinos coming from other sources.
Using multiple telescopes astronomers have successfully tracked the source of a neutrino that was detected on September 22 2017 by the IceCube neutrino telescope in Antarctica to a galaxy 3.7 billion light years away.
Because scientists on the IceCube experiment had worked out the path the particle took through their subterranean ice instrument, astronomers knew where in the sky to look for the particle’s source. A string of early observations came up blank, but days later Nasa’s Fermi Gamma-ray Space Telescope spotted the likely source: a flaring “blazar”.
Most galaxies are thought to have spinning supermassive black holes at their centres. But some of these black holes appear to pull in material at ferocious rates, a process that simultaneously sends streams of highly energetic particles out into space. Such galaxies are called blazars, although the term only applies when one of these streams is directed straight at Earth.
The blazar that appears to have sent the neutrino our way lies 3.7bn light years from Earth, just off the left shoulder of the constellation of Orion. While a single detection is not strong evidence, the IceCube scientists went back through their records and found a flurry of neutrinos coming from the same spot over 150 days in 2014 and 2015.
This I think is the first time scientists have linked a neutrino to its source, outside our solar system. Most neutrino detections come from the Sun. That they could trace this one back to a blazar so far away means their neutrino telescopes are now becoming sensitive enough to find and study the neutrinos coming from other sources.