The location of the volcanoes on Titan are not where scientists had expected them to be.
The uncertainty of science: The location of the volcanoes on Titan are not where scientists had expected them to be.
As Io moves closer to Jupiter, the planet’s powerful gravity pulls hard on the moon, deforming it. This force decreases as Io retreats, and the moon bounces back. This cycle of flexing creates friction in Io’s interior, which in turn generates enormous amounts of volcano-driving tidal heat. Common sense suggests that Io’s volcanoes would be located above the spots with the most dramatic internal heating. But Hamilton and his colleagues found that the volcanoes are significantly farther to the east than expected.
Many of the news headlines, including the article above, have trumpeted how the volcanoes on Io are in the wrong place. (See also this article.) Not. The theories were wrong, not the volcanoes. Nature does what it wants to do. It is our job to figure out why.
The uncertainty of science: The location of the volcanoes on Titan are not where scientists had expected them to be.
As Io moves closer to Jupiter, the planet’s powerful gravity pulls hard on the moon, deforming it. This force decreases as Io retreats, and the moon bounces back. This cycle of flexing creates friction in Io’s interior, which in turn generates enormous amounts of volcano-driving tidal heat. Common sense suggests that Io’s volcanoes would be located above the spots with the most dramatic internal heating. But Hamilton and his colleagues found that the volcanoes are significantly farther to the east than expected.
Many of the news headlines, including the article above, have trumpeted how the volcanoes on Io are in the wrong place. (See also this article.) Not. The theories were wrong, not the volcanoes. Nature does what it wants to do. It is our job to figure out why.