Astronomers discover star fleeing Milky Way at 3.7 million mph

Astronomers have discovered a star that rocketing out of the Milky Way at 3.7 million miles per hour because five million years ago it made a close approach to Sagittarius A* (prounounced “A-star”), the super-massive black at the center of the galaxy.

“The velocity of the discovered star is so high that it will inevitably leave the Galaxy and never return”, said Douglas Boubert from the University of Oxford, a co-author on the study.

Astronomers have wondered about high velocity stars since their discovery only two decades ago. S5-HVS1 is unprecedented due to its high speed and close passage to the Earth, “only” 29 thousand light years away. With this information, astronomers could track its journey back into the centre of the Milky Way, where a 4 million solar mass black hole, known as Sagittarius A*, lurks.

Almost certainly there are many such stars. They are just hard to spot.

G2 survives Milky Way center fly by

The uncertainty of science: The gas cloud, dubbed G2, that was going to be eaten by the supermassive black hole at the center of the Milky Way as it did a close fly-by this summer has instead turned out to be a massive star formed when the star’s of its binary system merged.

G2 survived the fly-by, produced no big fireworks which were what was predicted if it has been a gas cloud. The data now suggests that the object is instead a very big star formed when two stars merged.

Massive stars in our galaxy, [astronomer Andrea Ghez] noted, primarily come in pairs. When the two stars merge into one, the star expands for more than one million years “before it settles back down,” Ghez said. “This may be happening more than we thought; the stars at the center of the galaxy are massive and mostly binaries. It’s possible that many of the stars we’ve been watching and not understanding may be the end product of a merger that are calm now.”

Be warned that this new hypothesis about G2 has its own uncertainties. Better data might eventually find it to be something else again.