China tests space junk removal robot in geosynchronous orbit

China has apparently used a space junk removal robot to tug a defunct Chinese satellite out of geosynchronous orbit, thus opening that slot for future satellites.

Ground tracking by ExoAnalytic Solutions found that the robot, dubbed SJ-21, apparently docked with the defunct satellite on January 22nd. Since then:

In an email to Breaking Defense this afternoon, Flewelling [of ExoAnalytic] said the latest tracking data gathered earlier today from ExoAnalytic’s telescopes show the SJ-21 separating from the Compass G2, leaving the latter in the eccentric “super-graveyard drift orbit.” SJ-21 now has moved back to a near-GEO orbit.

The orbit places the defunct satellite in an orbit above the geosynchronous orbit satellites use, but in an orbit that is not typical.

This work is comparable to what the Japanese/American company Astroscale is presently testing in low Earth orbit, though it appears far more sophisticated. In fact, based on what SJ-21 has done so far, it appears China is far ahead of everyone else in developing in-orbit robotic servicing capabilities.

DARPA’s satellite servicing mission adrift

Capitalism in space? DARPA’s program to test a satellite servicing mission appears in serious and complex trouble with the termination by Maxar (previously called SSL) of its contract to build the structure, or “bus”, of the robot.

What makes this more complicated is that the company building the actual servicing payload is continuing its work.

While Maxar will no longer be providing the satellite bus, work on the servicing payload continues. Among the companies involved in that effort is Praxis, a company handling planning for mission operations of the RSGS servicing system, such as how the system will safely grapple the target satellite. “For our day-to-day operations, that hasn’t really affected us. We’re pretty far along on the payload development,” said Tony Marzi, general manager of Praxis, during a presentation at the MIT New Space Age Conference at the Massachusetts Institute of Technology here March 15.

DARPA is thus calling for proposals to launch this payload.

The irony here is that this DARPA project was under criticism from the start, even to the point that a competing satellite servicing company, Orbital ATK, sued the agency. That company, now part of Northrop Grumman, was building its own privately funded servicing robot, and considered DARPA’s effort to be unfair in that it provided direct government subsidies to its competitors.

While Orbital ATK lost its suit, it now appears it has won the competition — assuming it eventually launches its own mission.

Orbital ATK unveils new satellite servicing robots

Capitalism in space: At a satellite conference yesterday Orbital ATK unveiled a new robotic satellite servicing system utilizing two new robots, the Mission Robotic Vehicle (MRV) and Mission Extension Pods (MEP), simpler yet also more sophisticated versions of its Mission Extension Vehicle (MEV) which is already planned for launch later this year.

Under the new approach, a Mission Robotic Vehicle, based on the MEV design, will carry 10 to 12 Mission Extension Pods. The Mission Robotic Vehicle would approach a customer’s satellite and use a robotic arm to attach a pod to that satellite. The pod would then take over stationkeeping, proving up to five years of additional life. The Mission Robotic Vehicle and Mission Extension Pods are intended to provide new solutions to customers that don’t need the full-fledged capabilities of the MEV. The pods have a shorter lifetime than an MEV and do not provide attitude control capabilities.

The new system, designed to be ready for service in 2021, largely incorporates existing technology. The Mission Robotic Vehicle is a version of the MEV and the Mission Extension Pods is based on Orbital ATK’s ESPASat small satellite bus.

One new technology will be the robotic arm. Tom Wilson, president of SpaceLogistics, the Orbital ATK subsidiary offering the satellite life extension program, said the company was considering technology from NASA as well as Europe. “We’ve got a couple of different options,” he said, but hasn’t yet made a decision on the specific technology.

Orbital ATK’s new design will certainly cost its customers a lot less, since its design that will allow them, with one launch, to place a robot in orbit capable of servicing up to twelve different satellites. You want to extend the life of your communications satellite by five years? You call Orbital ATK, and they use their already orbiting Mission Robotic Vehicle to install an extension pod on your satellite. This way they can spread the cost of the launch across a dozen different customers.

Orbital ATK to launch robotic servicing mission

The competition heats up: Orbital ATK has signed Intelsat to the first contract for a private robotic servicing mission to defunct commercial communications satellites.

Orbital ATK is offering the Mission Extension Vehicle (MEV), a spacecraft designed to rendezvous with a commercial satellite and dock to the nozzle of its apogee kick motor and surrounding adapter ring. The MEV would then take over propulsion and attitude control for the satellite, offering up to five years of extended life.

Intelsat has agreed to be the customer for the first MEV mission, named MEV-1 and scheduled for launch in 2018. MEV-1 will first dock with a retired satellite in a graveyard orbit above stationary orbit to test its systems, then dock with an active Intelsat satellite to extend its life for five years.

I like the concept. Unlike other much more complicated proposals, which propose to actually refuel the satellite’s original tank, this is simple, quick, and quite doable for relatively little developmental cost. Orbital ATK already as the technology to do the rendezvous, from its Cygnus freighter. All they need to refine is the specific technology to attach to the specific satellites.