A spinning heat shield to lower their cost and weight
Link here. Key quote:
Made of a flexible, strong and heat-resistant material that folds down when not in use, his shield automatically starts spinning like a samara-type tree seed when exposed to the onrush of air that a spacecraft would experience when dropping through a planet’s atmosphere.
As it spins, centrifugal force causes its skirt-like sides to flare out and stiffen. This creates the drag needed to help slow the descent, while also providing a large protective surface for the dissipation of heat. No additional machinery, other than the shield itself, is required for its deployment.
“Since this prototype is lightweight and flexible enough for use on smaller satellites, research could be made easier and cheaper,” says Wu. “The heat shield would also help save cost in recovery missions, as its high induced drag reduces the amount of fuel burned upon re-entry.”
More details here. Very clever. It needs to be tested to see if it can work.
Link here. Key quote:
Made of a flexible, strong and heat-resistant material that folds down when not in use, his shield automatically starts spinning like a samara-type tree seed when exposed to the onrush of air that a spacecraft would experience when dropping through a planet’s atmosphere.
As it spins, centrifugal force causes its skirt-like sides to flare out and stiffen. This creates the drag needed to help slow the descent, while also providing a large protective surface for the dissipation of heat. No additional machinery, other than the shield itself, is required for its deployment.
“Since this prototype is lightweight and flexible enough for use on smaller satellites, research could be made easier and cheaper,” says Wu. “The heat shield would also help save cost in recovery missions, as its high induced drag reduces the amount of fuel burned upon re-entry.”
More details here. Very clever. It needs to be tested to see if it can work.