Saturn’s weird moon Pan

Pan

New images from Cassini have provided scientists their first sharp images of Saturn’s moon Pan, and what those images show is something really weird. The image on the right is only one sample, with the link providing more.

Pan orbits in a gap between two rings, and the ridge might have accumulated from material from those rings. Then again, maybe not. It will take more data to I think completely unravel how this moon got to look like it does.

A propeller in Saturn’s A ring

A propeller in Saturn's A ring

Cool image time! The image on the right, cropped and reduced to show here, captures the same propeller feature in Saturn’s A ring, with the top image showing the sunlight side and the bottom image the side away from the Sun.

Cassini scientists have been tracking the orbit of this object for the past decade, tracing the effect that the ring has upon it. Now, as Cassini has moved in close to the ring as part of its ring-grazing orbits, it was able to obtain this extreme close-up view of the propeller, enabling researchers to examine its effects on the ring. These views, and others like them, will inform models and studies in new ways going forward.

…The propeller’s central moonlet would only be a couple of pixels across in these images, and may not actually be resolved here. The lit-side image shows that a bright, narrow band of material connects the moonlet directly to the larger ring, in agreement with dynamical models. That same thin band of material may also be obscuring the moonlet from view.

Lengthwise along the propeller is a gap in the ring that the moonlet has pried open. The gap appears dark on both the lit and unlit sides. Flanking the gap near the moonlet are regions of enhanced density, which appear bright on the lit side and more mottled on the unlit side.

The scale of the two images is slightly different, 0.33 and 0.44 miles, as they were taken as Cassini was zipping past during one of its ring-grazing orbits on February 21.

To my eye, the effect here faintly resembles a wake produced by a boat in water, except that the wake moves in opposite directions on opposite sides of the tiny moonlet as it plows through the A ring.

A Saturn moon makes waves

Daphnis makes waves

Cool image time! The image above, taken on January 16, 2017 during one of Cassini’s ring-grazing passes as it enters its last year at Saturn, has been reduced and cropped to post here. It shows clearly the waves caused by the gravity of the moon Daphnis as its travels within a gap in the rings of Saturn.

Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini’s viewing angle causes the gap to appear narrower than it actually is, due to foreshorteneing. The little moon’s gravity raises waves in the edges of the gap in both the horizontal and vertical directions.

The image also shows many details about Daphnis itself, including a ridge at its equator that is thought to be an accumulation of material gathered from the rings.

The strangeness of Saturn’s rings is well illustrated here. Though made up of many solid particles, as a group the rings act almost like liquid. Note for example the ring on the far side of Daphnis. Its edge gets pulled out slightly as the moon goes by, but then the gravity of the rest of the ring pulls it back.

The universe is a wonderful place, as it is. No need to make up stuff (such as faces on Mars or fake civilizations on the Moon), as our imagination is probably insufficient to match the weirdness that is really out there.

Preparing to dive into Saturn’s rings

Saturn from above

Cool image time! The photo at the right, reduced to show here, was taken by Cassini on October 28, 2016 as it was shifting its orbit to prepare for the spacecraft’s last year at Saturn, where it will make repeated dives down past and even inside the gas giant’s rings. As they note at the link,

No Earth-based telescope could ever capture a view quite like this. Earth-based views can only show Saturn’s daylit side, from within about 25 degrees of Saturn’s equatorial plane. A spacecraft in orbit, like Cassini, can capture stunning scenes that would be impossible from our home planet.

It is interesting to compare this image with this July image. Comparing the two provides a sense of Cassini’s travels.

Herschel Crater on Mimas

Herschel Crater on Mimas

Cool image time! The photo on the right was taken by Cassini on October 22, 2016 when the spacecraft was about 115,000 miles away and has a resolution of about 3,300 feet per pixel. It highlights well Mimas’ most distinctive feature, its single gigantic crater, which also makes the tiny moon of Saturn one of the more distinctive planetary bodies in the entire solar system.

Named after the icy moon’s discoverer, astronomer William Herschel, the crater stretches 86 miles (139 kilometers) wide — almost one-third of the diameter of Mimas (246 miles or 396 kilometers) itself.

Large impact craters often have peaks in their center — see Tethys’ large crater Odysseus in The Crown of Tethys. Herschel’s peak stands nearly as tall as Mount Everest on Earth.

The mystery here is how did Mimas survive such an impact. One would think that the moon would be been split apart by the collision, and that it didn’t suggests the material involved was soft enough to absorb the dynamic forces, and that the speed of the impact was slow enough to reduce those forces overall.

Close-up of Pandora

Pandora

Cool image time! The image on the right, cropped and reduced to show here, is that of Saturn’s small moon Pandora. The full resolution image was taken on December 18, 2016 during Cassini’s closest fly-by of the Moon ever. It was taken from a distance of 25,200 miles, and has a resolution of 787 feet per pixel.

Note the pooling of dust-like material in the crater. Note also the brighter exposed surfaces on the inner crater rim above that pooled material. It appears to my eye almost as if the dust that had coated the higher elevations of this inner rim has for some unknown reason suddenly settled into the crater’s floor.

Pandora orbits just outside Saturn’s F ring, which means it is well exposed to the material in the ring. I would also expect that much of its surface is well coated with particles from the rings.

First images from Cassini’s first Saturn ring flyby

Saturn's polar vortex

Cool image time! And this is only the start. The Cassini science team has released the first images taken by Cassini during its first of 42 close flybys of the rings of Saturn. The image on the right, cropped from the full image, shows Saturn’s north polar vortex. The storm at the polar really does look like a whirlpool that is descending down into the gas giant’s depth.

I must emphasize that photography was not the focus of this first flyby. These images were taken the two days before the flyby on December 4. Later flybys are going to produce far better images, as they will be taking pictures throughout.

Cassini makes its first close ring flyby of Saturn

Cassini has begun its last year at Saturn, making its first close fly-by of the gas giant’s rings yesterday.

Cassini’s imaging cameras obtained views of Saturn about two days before crossing through the ring plane, but not near the time of closest approach. The focus of this first close pass was the engine maneuver and observations by Cassini’s other science instruments. Future dives past the rings will feature some of the mission’s best views of the outer regions of the rings and small, nearby moons.

Each of Cassini’s orbits for the remainder of the mission will last one week. The next pass by the rings’ outer edges is planned for Dec. 11. The ring-grazing orbits — 20 in all — will continue until April 22, when the last close flyby of Saturn’s moon Titan will reshape Cassini’s flight path. With that encounter, Cassini will leap over the rings, making the first of 22 plunges through the 1,500-mile-wide (2,400-kilometer) gap between Saturn and its innermost ring on April 26.

On Sept. 15, the mission will conclude with a final plunge into Saturn’s atmosphere. During the plunge, Cassini will transmit data on the atmosphere’s composition until its signal is lost.

Now for a bit of reality: When Cassini’s mission ends on September 15, 2017, it will likely be a minimum of 20 years before another spacecraft returns.

The beginning of Cassini’s final year at Saturn

Link here. The article does a nice job of outlining, with videos, what will happen as the spacecraft makes multiple dives inside rings.

Cassini’s final acts, which will play out over the next year. That pass placed Cassini in a high-inclination orbit tilted 60° relative to the ring plane. Cassini will perform 20 passes just 620 miles (1000 kilometers) outside the F ring of Saturn in a phase known as the Ring-Grazing Orbits, which runs from late November 2016 through April 2017.

Cassini already reached apoapse, or its farthest point from Saturn, on Wednesday, November 30th. The first ring crossing is coming right up this weekend on Sunday, December 4th, at 7:09 a.m. EST / 13:09 UT. During the first periapse pass on Sunday, Cassini will also burn its main engine for the 183rd and final time for the mission. All later fine course corrections will be made using thrusters only.

Things get even more interesting after April, when the series of Grand Finale Orbits will begin, taking the spacecraft through the 1240-mile-wide (2000-kilometer-wide) gap between the planet’s cloud tops and rings for 22 final orbits. The Grand Finale Orbits start with the spacecraft’s 126th and final pass near Titan, which will set the spacecraft up for much tighter final orbits.

Saturn from above

Saturn from above.

Cool image time! The image on the right, reduced in resolution to show here, shows Saturn from above as Cassini began re-positioning itself into a higher inclination orbit for its last year of orbit dives near and inside the planet’s rings.

The view looks toward the sunlit side of the rings from about 41 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on July 16, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 1 million miles (2 million kilometers) from Saturn. Image scale is 68 miles (110 kilometers) per pixel.

Changing seasons on Titan

Since entering Saturn orbit in 2004, Cassini has seen the seasons on Titan shift through half a Saturn year.

As Titan approaches its northern summer solstice, NASA’s Cassini spacecraft has revealed dramatic seasonal changes in the atmospheric temperature and composition of Saturn’s largest moon. Winter is taking a grip on the southern hemisphere and a strong vortex, enriched in trace gases, has developed in the upper atmosphere over the south pole. These observations show a polar reversal in Titan’s atmosphere since Cassini arrived at Saturn in 2004, when similar features were seen in the northern hemisphere.

Sadly, there will not be any spacecraft at Saturn during the second half of this Saturn year. After Cassini ends its mission in 2017 it will likely be many decades before another spacecraft arrives, since at this moment none has even been proposed.

Saturn’s changing north pole

A comparison of images taken by Cassini in 2012 and then in 2016 of Saturn’s north polar region shows a significant change in color.

Scientists are investigating potential causes for the change in color of the region inside the north-polar hexagon on Saturn. The color change is thought to be an effect of Saturn’s seasons. In particular, the change from a bluish color to a more golden hue may be due to the increased production of photochemical hazes in the atmosphere as the north pole approaches summer solstice in May 2017.

Saturn’s wonderful rings

Saturn's rings, and the small moons that shape them

Cool image time! The image on the right, reduced to fit here, is a recent Cassini image, taken July 2, 2016, that shows the rings as well as the moon Pan nestled within the ring’s narrow gap

Pan (17 miles or 28 kilometers across, left of center) holds open the Encke gap and shapes the ever-changing ringlets within the gap (some of which can be seen here). In addition to raising waves in the A and B rings, other moons help shape the F ring, the outer edge of the A ring and open the Keeler gap. This view looks toward the sunlit side of the rings from about 8 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 2, 2016.

The image also highlights the incredible and quite magical beauty of Saturn’s rings, which remain to me one of the solar system’s most amazing wonders.

Saturn in all its glory

Saturn

Cool image time. The Cassini science team have released a beautiful full-color image of Saturn, shown cropped on the right, as well as a movie, both produced from images taken in April.

This view shows Saturn’s northern hemisphere in 2016, as that part of the planet nears its northern hemisphere summer solstice in May 2017. Saturn’s year is nearly 30 Earth years long, and during its long time there, Cassini has observed winter and spring in the north, and summer and fall in the south. The spacecraft will complete its mission just after northern summer solstice, having observed long-term changes in the planet’s winds, temperatures, clouds and chemistry.

Cassini scanned across the planet and its rings on April 25, 2016, capturing three sets of red, green and blue images to cover this entire scene showing the planet and the main rings. The images were obtained using Cassini’s wide-angle camera at a distance of approximately 1.9 million miles (3 million kilometers) from Saturn and at an elevation of about 30 degrees above the ring plane. The view looks toward the sunlit side of the rings from a sun-Saturn-spacecraft angle, or phase angle, of 55 degrees. Image scale on Saturn is about 111 miles (178 kilometers) per pixel.

The exposures used to make this mosaic were obtained just prior to the beginning of a 44-hour movie sequence.

The only real tragedy here is that the Cassini mission is ending soon. When it does, it will be decades, at a minimum, before we have another spacecraft in orbit around Saturn and capable of giving us this view.

Update: NASA today issued a press release detailing what will happen during Cassini’s final year at Saturn, including 22 plunges between Saturn and its rings!

Beautiful and mysterious Saturn

A bright spot in Saturn's rings

Cool image time! The image to the right (reduced in resolution to show here) was posted today on the Cassini gallery page. The release focused on the bright spot in the widest ring just above the center of the image.

An ethereal, glowing spot appears on Saturn’s B ring in this view from NASA’s Cassini spacecraft. There is nothing particular about that place in the rings that produces the glowing effect — instead, it is an example of an “opposition surge” making that area on the rings appear extra bright. An opposition surge occurs when the Sun is directly behind the observer looking toward the rings. The particular geometry of this observation makes the point in the rings appear much, much brighter than would otherwise be expected.

I however am more interested in the black outline at Saturn’s limb that visually separates the planet from the rings. Is that natural or introduced intentionally in data processing to make the image more pleasing? If it is natural than I wonder how Saturn’s top cloud layer could produce such an opaque and sharply defined region able to so successfully block the light coming from the rings. If introduced intentionally I question the wisdom, as I can’t see any reason to do it and therefore am worried that they might have done some other unnecessary manipulation that makes it difficult to draw any honest conclusions from the image.

Either way, from an aesthetic perspective the image still remains breath-taking. It also underlines once again the amazing engineering that made it possible. All things remain possible, if we maintain our ability to build this kind of engineering.

Dione’s global geology

Dione

Cool image time! The picture of Saturn’s moon Dione, taken by Cassini in April 2015 and reduced in size to show here, shows a range of global tectonic geological features. The impact craters we of course understand, but the white linear features are more puzzling. They are probably related to a heating and cooling process, but the full nature of that process is at present not fully understood. Tidal effects and the planet’s cooling over time both contributed, but to what extent is not yet known. Add on top of that the violent effect of impact and the process gets even more complicated. Moreover, do the linear features suggest present geological activity, or are they evidence of past events? Your guess is as good as mine.

Rivers of liquid carved deep gorges on Titan

Cassini radar data of Via Flumina

Cool image time! New data from Cassini has now both confirmed that there is liquid inside some of the river-like formations on Titan, and that this liquid has carved these formations into very deep gorges.

The Cassini observations reveal that the channels — in particular, a network of them named Vid Flumina — are narrow canyons, generally less than half a mile (a bit less than a kilometer) wide, with slopes steeper than 40 degrees. The canyons also are quite deep — those measured are 790 to 1,870 feet (240 to 570 meters) from top to bottom.

The branching channels appear dark in radar images, much like Titan’s methane-rich seas. This suggested to scientists that the channels might also be filled with liquid, but a direct detection had not been made until now. Previously it wasn’t clear if the dark material was liquid or merely saturated sediment — which at Titan’s frigid temperatures would be made of ice, not rock.

The diagram on the above right is from the paper itself, and shows some of the radar data obtained by Cassini. It also illustrates the deep and narrow nature of Via Flumina. This is almost the equivalent of what we call slot canyons on Earth, formed by periodic flash floods that cut their way down as the surface is slowly uplifted by other processes.

The new radar data showed that the surface at the base of the gorge was smooth and flat, just as you’d find if that base was filled with liquid.The altimeter data showed that gorge’s elevation matched that of Titan’s lakes at its insurgence, but as you traveled upstream the elevation rose, just as it does on any river on Earth. Moreover, this data was reasonably trustworthy as they had already used Cassini to successfully do exactly the same thing — identify a known river — when it flew past Earth on its way to Saturn.

Be prepared for one piece of misinformation when the press reports on this story, almost certainly caused by the American Geological Union’s press release about this paper. That press release incorrectly claims that the paper confirmed that these are methane rivers. It does no such thing. It only shows that the gorges have a liquid in them, and that the liquid almost certainly formed the gorges. Though methane is a very likely candidate for this liquid based on what we know of Titan, the actual make-up of the river remains uncertain.

I therefore predict our incompetent modern mainstream press will only read this press release and not the paper itself, and thus they will tout these incorrectly as methane rivers.

Below is a cropped Cassini radar image of Via Flumina, showing its river-like appearance. Scientists always suspected these were formed by flowing liquid. Now they have strong evidence from within the gorge to justify that suspicion.

Via Flumina on Titan

The rings of Saturn

The rings of Saturn

Cool image time! The picture on right, cropped by me to show here, was taken by Cassini on April 2, 2016. You can see the moons Dione (on left) and Epimetheus (on right) above the rings. The full image can be seen here.

I am sure there is a lot of important science contained within this image. I post it here however not because of any scientific reason but entirely because it is simply damn spectacular. More than a decade after Cassini arrived at Saturn, every new picture of the planet’s giant ring system still seems incredibly unbelievable.

The universe is an amazing place, isn’t it?

Saturn from Cassini

Saturn's rings

Cool image time! The image on the right, reduced in resolution to post here, shows how, because of the seasonal tilt of Saturn, the shadow of its rings is now cover much of the gas giant’s southern hemisphere.

When NASA’s Cassini spacecraft arrived at Saturn 12 years ago, the shadows of the rings lay far to the north on the planet. As the mission progressed and seasons turned on the slow-orbiting giant, equinox arrived and the shadows of the rings became a thin line at the equator. This view looks toward the sunlit side of the rings from about 16 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on March 19, 2016.

We will continue to get from Cassini increasingly beautiful images of Saturn and its rings as the spacecraft positions itself better for its final flight down into the planet’s atmosphere.

Titan over Saturn’s rings

Titan over Saturn's rings

Cool image time! The picture on the right, taken on January 26, 2016 by Cassini and reduced and cropped to show here, captures Titan above Saturn’s rings, which are themselves partly obscured by the shadow of Saturn (unseen on the right) that falls across them.

Make sure you go to look at the full image. This is the kind of vista that artists in the 1950s imagined we’d see once we began to explore the solar system.

Saturn’s moon Epimetheus

Epimetheus

Cool image time! The picture on the right was taken by Cassini on December 6, 2015, and shows the asteroid-like misshapen moon, too small (only 70 miles across) for gravity to force it into a sphere. Behind it, filling the frame, is gigantic Saturn.

If you look close, you can see one crater that appears elongated, as if the impact was only a glancing blow.

The methane seas of Titan

Scientists have used the data that Cassini has gathered in more than a hundred fly-bys of Titan to assemble a rough outline of the geology and make-up of Titan’s liquid lakes.

There are three large seas, all close to the north pole, surrounded by dozens of smaller lakes in the northern hemisphere. Just one lake has been found in the southern hemisphere. The exact make-up of these liquid reservoirs remained elusive until recently. A new study using scans from Cassini’s radar during flybys of Titan between 2007 and 2015 confirms that one of the largest seas on the moon, Ligeia Mare, is mostly liquid methane.

“We expected to find that Ligeia Mare would be mostly ethane, which is produced in abundance in the atmosphere when sunlight breaks methane molecules apart,” explains Alice Le Gall from the Laboratoire Atmosphères, Milieux, Observations Spatiales and Université Versailles Saint-Quentin, France, and lead author of the new study. “Instead, this sea is predominantly made of pure methane.”

The data is also giving them the first understanding of the weather and geology that forms the lakes, including why methane instead of ethane dominates.

Titan’s changing shorelines

Shoreline changes on Titan

Cool image time! Using radar images taken during the past decade by Cassini scientists have discovered changes taking place along the shorelines of Titan’s hydrocarbon seas.

Analysis by Cassini scientists indicates that the bright features, informally known as the “magic island,” are a phenomenon that changes over time. They conclude that the brightening is due to either waves, solids at or beneath the surface or bubbles, with waves thought to be the most likely explanation. They think tides, sea level and seafloor changes are unlikely to be responsible for the brightening.

The images in the column at left show the same region of Ligeia Mare as seen by Cassini’s radar during flybys in (from top to bottom) 2007, 2013, 2014 and 2015.

These shoreline changes are not the only ones spotted by Cassini. However, because these are radar images, not visual, there are many uncertainties about what causes the changes, which is why they list several possibilities. For example, with radar, a simple roughness on the surface (such as waves) could cause a brightening.

Mighty Saturn

Saturn

Cool image time! Be sure to click on this link to see the full resolution Cassini version of the image on the right. Its resolution is 10 miles per pixel, and even so the giant planet cannot be fit in the frame.

One moon, Tethys, is visible, though to make it so required its brightness to be increased by 2. Also, if you look close at the bands at the north pole you can see their strange still-not-understood pentagon shape.

The jets of Enceladus

Enceladus's jets

Cool image time! The image above, taken in June by Cassini, shows the night side of Saturn’s moon Enceladus, framed by Saturn’s rings, and faintly showing the jets of water coming from its south pole. To show it here I have cropped it and reduced it somewhat, as well as brightened the jets to make them more visible.

The release notes how the image compares the frozen water of Saturn’s rings and the liquid activity of Enceladus’s jets. I note how the image is simply beautiful. Be sure to click on the link to see the full resolution image.

1 2 3 4 5 6