NASA engineers continue to struggle to save the Flashlight lunar probe

In an update today, NASA reports that engineers continue to troubeshoot the failure of the experimental thrusters on the Lunar Flashlight cubesat, in an effort to improvise a way to get the probe into lunar orbit.

Shortly after launch on Dec. 11, 2022, the operations team for NASA’s Lunar Flashlight determined that three of the four CubeSat’s thrusters were underperforming. This cast doubt on whether the mission could complete its stretch science goal of detecting surface ice at the Moon’s South Pole. After analyzing the situation, team members at NASA’s Jet Propulsion Laboratory and Georgia Tech arrived at a creative maneuvering technique that would use the one fully-functioning thruster to get into planned orbit. But when attempting the modified maneuvers in January, that thruster also experienced a rapid loss in performance and the team determined that Lunar Flashlight would likely be unable to reach its planned near-rectilinear halo orbit around the Moon.

After further troubleshooting, the operations team has been working on ways to restore partial operation of one or more thrusters to keep the spacecraft within the Earth-Moon system. They have had some success but continue to try new things to clear the suspected obstructions in the thruster fuel lines. They have until the end of April to generate the required thrust to preserve the opportunity to allow for monthly flybys of the lunar South Pole.

Though it increasingly appears Lunar Flashlight will not make lunar orbit, the mission is not a failure, since it was first and foremost an engineering mission testing a variety of new cubesat technologies, including the failed thrusters. Their failure and the efforts by engineers to recover them is important data for developing better cubesat thrusters on future such planetary probes.

Rocket Lab’s Photon upper stage completes 3rd of 7 engine firings to get CAPSTONE to Moon

Rocket Lab’s Photon upper stage has now successfully completed the third of seven planned engine burns designed to slowly raise the Earth orbit of NASA’s experimental lunar cubesat CAPSTONE so that it can eventually be sent towards the Moon.

Lunar Photon’s HyperCurie engine will perform a series of orbit raising maneuvers by igniting periodically to increase Photon’s velocity, stretching its orbit into a prominent ellipse around Earth. Six days after launch, HyperCurie will ignite one final time, accelerating Photon Lunar to 24,500 mph (39,500 km/h) and setting it on a ballistic lunar transfer. Within 20 minutes of this final burn, Photon will release CAPSTONE into space for the first leg of the CubeSat’s solo flight. CAPSTONE’s journey to NRHO is expected to take around four months from this point. Assisted by the Sun’s gravity, CAPSTONE will reach a distance of 963,000 miles from Earth – more than three times the distance between Earth and the Moon – before being pulled back towards the Earth-Moon system.

Once in lunar orbit, CAPSTONE will be used to both test operations in that orbit (similar to the one NASA’s Lunar Gateway space station will use) while also demonstrating the use of a cubesat on an interplanetary mission.

CAPSTONE Moon satellite shipped to New Zealand by Terran Orbital

Capitalism in space: Terran Orbital has completed construction of the CAPSTONE Moon smallsat and has now had it shipped to New Zealand for its launch on a Rocket Lab Electron rocket no earlier than May 27th.

Tyvak Nano-Satellite Systems, a Terran Orbital Corporation, built the spacecraft for the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment, otherwise known as CAPSTONE. The 12U CubeSat includes a radio tower on top that extends its size from a traditional 12U form factor.

CAPSTONE will not go directly to the Moon but instead, follow a “ballistic lunar transfer” that will take it out as far as 1.5 million kilometers before returning into lunar orbit. That transfer, which will take about four months to complete, is designed to save propellant, making the mission feasible for such a small spacecraft. The CAPSTONE payload and its software are owned and operated by Advanced Space for NASA.

CAPSTONE will use Rocket Lab’s Proton upper stage to get it to the Moon. It will then test maneuvering as well as communicating in the lunar halo orbit that NASA wants to use with its Lunar Gateway space station. It will also be proving out the use of this kind of smallsat for future interplanetary missions.

Cubesat uses thruster to avoid collision

Capitalism in space: For the first time a cubesat has used a thruster to not only adjust its orbit but to also avoid a collision with another satellite.

From June 23 to July 3, the UWE-4 cubesat fired its NanoFEEP thrusters several times to reduce its altitude by more than 100 meters. By comparison, natural orbital decay would lower the altitude 21 meters in the same timeframe, according to a University of Wuerzburg news release.

One July 2, as the UWE-4 cubesat was lowering its altitude, the University received a warning from the U.S. Air Force’s 18th Space Control Squadron of a July 5 conjunction with a retired Iridium satellite. When UWE-4 mission operations personnel analyzed the conjunction, they determined the UWE-4 cubesat would not collide with the Iridium satellite because it would be orbiting at a lower altitude. As a result of the analysis, UWE-4 mission operations personnel continued firing thrusters to lower the cubesat’s altitude. They received no further conjunction messages.

The thrusters were built by Morpheus Space. Incorporating thrusters onto a cubesat, the size of which fits on the palm of your hand, is quite amazing, and illustrates the growing capability of these tiny satellites.

Test cubesat to launch to Gateway lunar orbit

NASA has awarded a $13.7 million contract to Advanced Systems to build a cubesat to test placement and operation in the orbit the agency wishes to place its Lunar Gateway space station.

The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is expected to be the first spacecraft to operate in a near rectilinear halo orbit around the Moon. In this unique orbit, the CubeSat will rotate together with the Moon as it orbits Earth and will pass as close as 1,000 miles and as far as 43,500 miles from the lunar surface.

The pathfinder mission represents a rapid lunar flight demonstration and could launch as early as December 2020. CAPSTONE will demonstrate how to enter into and operate in this orbit as well as test a new navigation capability. This information will help reduce logistical uncertainty for Gateway, as NASA and international partners work to ensure astronauts have safe access to the Moon’s surface. It will also provide a platform for science and technology demonstrations.

While proving the capability of cubesats for these unmanned planetary probes is all to the good, I must once again point out that making this orbit a way station on the way to the Moon actually makes it more difficult to get there. More fuel and equipment is required to transfer to the Moon once you are in Gateway’s planned orbit.

Based on our past experience with NASA boondoggles like this, Gateway will therefore act as a drag on future American lunar exploration. While other nations (China, India) will be landing on the surface, we will repeatedly find that our surface missions are delayed because of the added complexity of going from Earth to Gateway and then to the surface.

Chinese cubesat snaps picture of Earth and Moon from deep space

The Moon and Earth

A interplanetary cubesat, Longjiang-2, launched with China’s communications relay satellite that they are using to communicate with Chang’e-4 and Yutu-2 on the far side of the Moon, has successfully taken a picture of both the Moon and Earth, as shown in the picture on the right.

Longjiang-2 is confirming what the MarCo cubesats proved from Mars, that cubesats can do interplanetary work.

And the picture is cool also. This was taken on February 3, when the entire face of the Moon’s far side is facing the Sun, illuminating it all. This timing also meant that the globe of the Earth would be entirely lit.

Cubesats heading to Mars complete first course correction

The two cubesats, MarCO-A and MarCO-B, that were launched with NASA’s InSight Mars lander, have both completed their first course corrections, the first ever done in interplanetary space by cubesats.

While MarCO-A corrected its course to Mars relatively smoothly, MarCO-B faced some unexpected challenges. Its maneuver was smaller due to a leaky thruster valve that engineers have been monitoring for the past several weeks. The leak creates small trajectory changes on its own. Engineers have factored in these nudges so that MarCO-B can still perform a trajectory correction maneuver. It will take several more weeks of tracking to refine these nudges so that MarCO-B can follow InSight on its cruise through space.

“We’re cautiously optimistic that MarCO-B can follow MarCO-A,” said Joel Krajewski of JPL, MarCO’s project manager. “But we wanted to take more time to understand the underlying issues before attempting the next course-correction maneuver.”

Once the MarCO team has analyzed data, they’ll know the size of follow-on maneuvers. Several more course corrections will be needed to reach the Red Planet.

Since these two cubesats are an engineering test, even MarCo-B’s fuel leak issue provides valuable information that will make future interplanetary missions more likely and viable.

China loses contact with one of two lunar cubesats

China has lost contact with one of the two test cubesats that were launched to the moon with their Queqiao Chang’e-4 communications satellite.

Though they continue to receive telemetry from one cubesat, without the second they will be unable to do the radio astronomy and interferometry experiments planned.

The interferometry experiments would have seen the observations made simultaneously by the DSLWP/Longjiang microsatellites to be combined. The test would be verification of technology for a constellation of small, low-frequency radio astronomy satellites that would emulate a telescope with a size equal to the maximum separation between the satellites.

The Chang’e-4 mission could however see some interferometry tests carried out, with Queqiao carrying the Netherlands-China Low-frequency Explorer (NCLE) astronomy instrument, and a Low Frequency Spectrometer (LFS) on the Chang’e-4 lander, which is expected to launch in November or December, following testing of Queqiao.

All is not lost. The cubesat that still functions has a camera, built in Saudi Arabia, and if it takes and successfully transmits any pictures this will be a cubesat landmark, the first interplanetary images ever taken by a cubesat.

Meanwhile, Queqiao Change’-4 is working as expected, laying the ground work for the launch of the Chang’e-4 lander later this year.

Russian student satellite hopes to be the brightest star in sky

A Russian student project hopes its cubesat satellite will become the brightest star in sky when it launches as a secondary payload on a Soyuz-2 rocket on July 14.

Once the small satellite is 370 miles into orbit, it will deploy a pyramid-shaped solar reflector that is designed to capture the sun’s rays and bounce them back to Earth, creating the effect of a twinkling star to Earthlings. The reflector will be 170 square feet, is reportedly 20 times thinner than human hair and is made of Mylar — a thin polymer material.

One goal is for the satellite to outshine naturally existing stars. Another is to evaluate how to brake satellites in orbit and de-orbit them. The Russian team of engineers and space enthusiasts also hope to generate interest in space exploration.

The mission was funded through a Russian crowdfunding website. While everyone is making a big deal about the satellite’s brightness, the engineering being tested to deploy the reflector, control it, and then deorbit the cubesat in a controlled manner is far more important. Up until recently most cubesats had somewhat limited capabilities, and were used almost exclusively to train students on satellite engineering. This mission joins many other recent missions in demonstrating that cubesats will soon be able to do almost anything much larger satellites do, and thus are economically more practically to launch.

LightSail successfully deploys solar sail

Engineers have confirmed that the cubesat prototype LightSail has successfully deployed its solar sails.

This is I think only the second time a solar sail has successfully deployed in space. More significant to me is the fact that it is the first time this kind of complex engineering test has been tried using a cubesat. If cubesats can begin to handle these kinds of tasks, unmanned satellite technology is going to take a gigantic leap forward.

LightSail back in business?

The Planetary Society’s solar sail engineering test called LightSail has re-established communications with the ground, allowing for the possibility that it can finally achieve its solar sail deployment, the main purpose of the mission.

I had previously reported that the sails had deployed, but a commenter correctly noted that only the panels have deployed, not the sails themselves, which need full battery power. The communications problem has been related to a battery charging problem. They are hoping that the batteries will get charged by mid-day today when they will try to deploy the sails.