Tag Archives: Interorbital

Interorbital completes static fire test of upper-stage engine

Capitalism in space: The smallsat rocket company Interorbital (IOS) today released a short video showing a successfully static fire test of the upper-stage engine for its Neptune rocket.

The IOS rocket team successfully completed the first test of Interorbital’s NEPTUNE series launch vehicle’s liquid upper-stage rocket engine (GPRE 0.75KNTA). Engine performance was well within its design parameters, generating a sea-level thrust of 750 pounds and a sea-level specific impulse of 245 seconds. This translates to a thrust of 1,000 pounds and a specific impulse of 300 seconds in a vacuum (with expansion nozzle). The ablatively-cooled rocket engine is powered by the hypergolic combination of White Fuming Nitric Acid (WFNA) and Turpentine/Furfuryl Alcohol. These high-density storable auto-igniting propellants power all IOS liquid rocket engines. Interorbital’s N1 launch vehicle utilizes two GPRE 0.75KNTA engines for its second stage and a single GPRE 0.75KNTA engine for its third stage.

I have embedded the video below the fold. This is the first real news update from Interorbital in months. In April 2017 they looked like they were close to a launch, but until today there were no further updates. Part of the issue appears that they changed their approach for manufacturing their rocket in order to save cost, and this might have thrown a wrench in their schedule.

» Read more


Watch a rocket tank being built, mostly by robots

Capitalism in space: The video below the fold shows the process by which Interorbital Systems built a rocket test tank for the Neptune smallsat rocket it is developing. It is definitely worth watching if you want to see the future of complex manufacturing. Robotic equipment does most of the work, in a precise manner that would be impossible for humans, which therefore allows for the construction of engineering designs that were previously impossible or too expensive. Now, such designs can be built relatively cheaply, and repetitively.

Hat tip Doug Messier at Parabolic Arc.

» Read more


Interorbital’s first test rocket, Neptune 1, is almost ready for flight

Capitalism in space: Interorbital, a smallsat rocket company building what they hope will be the world’s smallest and cheapest rocket, have announced that their first test rocket, Neptune 1 Guidance Test Vehicle (N1 GTV), is nearing completion.

During the test flight, the rocket will simulate an orbital launch trajectory by using the main rocket engine’s throttling capability to vary the thrust-to-weight ratio, thus simulating the actual conditions that will be experienced during an orbital launch. After the rocket passes through the transonic phase and Max Q, the engine will gradually throttle down, slowing the rocket until it begins to hover. At this point, the rocket engine will be shut down and the rocket will be allowed to fall. At a safe altitude, a parachute will be deployed for vehicle and payload recovery.

They then plan to follow this with an orbital test flight. No dates however for any of these test flights have as yet been announced.


Third Lunar X-prize competitor signs launch contract

The competition heats up: The Google Lunar X-prize has confirmed that a third competitor, Synergy Moon, has signed a launch contract to send its privately built and funded rover to the Moon.

The Synergy Moon mission will use a Neptune 8 rocket, built and launched by Interorbital Systems, to carry a lunar lander and at least one rover to the surface of the moon, launching from an open-ocean location off the California coast during the second half of 2017. Team Synergy Moon is one of three Google Lunar X-Prize teams now set to compete in 2017, joining SpaceIL and Moon Express. The remaining 13 teams have until December 31, 2016 for their launch agreements to be verified by X-Prize in order to proceed in the competition.

In looking at the website of the launch company, I am not impressed. I hope they succeed, but I would not put much money on this Lunar X-Prize competitor.