Astronomers find evidence for thousands of black holes near galaxy center


Readers!
 
For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
 
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

The uncertainty of science: Using data from the Chandra X-Ray Observatory, astronomers have found evidence suggesting that thousands of stellar-mass black holes might exist circling Sagittarius A* (pronounced A-star), the super-massive black hole at the center of the Milky Way.

Essentially, they found a dozen likely black hole candidates in what they think are X-ray binaries system. From this they extrapolate the number of potential stellar-massed black holes at the center of the galaxy. However,

While the authors strongly favor the black hole explanation, they cannot rule out the possibility that up to about half of the observed dozen sources are from a population of millisecond pulsars, i.e., very rapidly rotating neutron stars with strong magnetic fields.

In other words, this conclusion is very uncertain. Nonetheless, even if half of their candidates are not stellar-mass black holes, the results do suggest that there are a very large number of black holes circling Sagittarius A*. Using this information astronomers will be able to better refine their theories on the formation process for such super-massive black holes.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *