Astronomers find record-setting heaviest supermassive black hole


Genesis cover

On Christmas Eve 1968 three Americans became the first humans to visit another world. What they did to celebrate was unexpected and profound, and will be remembered throughout all human history. Genesis: the Story of Apollo 8, Robert Zimmerman's classic history of humanity's first journey to another world, tells that story, and it is now available as both an ebook and an audiobook, both with a foreword by Valerie Anders and a new introduction by Robert Zimmerman.

 
The ebook is available everywhere for $5.99 (before discount) at amazon, or direct from my ebook publisher, ebookit.

 
The audiobook is also available at all these vendors, and is also free with a 30-day trial membership to Audible.
 

"Not simply about one mission, [Genesis] is also the history of America's quest for the moon... Zimmerman has done a masterful job of tying disparate events together into a solid account of one of America's greatest human triumphs." --San Antonio Express-News

Astronomers have discovered the most massive black hole yet discovered, having a mass 40 billion times the mass of our Sun.

The new data obtained at the USM Wendelstein observatory of the Ludwig-Maximilians-University and with the MUSE instrument at the VLT [Very Large Telescope in Chile] allowed the team to perform a mass estimate based directly on the stellar motions around the core of the galaxy. With a mass of 40 billion solar masses, this is the most massive black hole known today in the local universe. “This is several times larger than expected from indirect measurements, such as the stellar mass or the velocity dispersion of the galaxy,” remarks Roberto Saglia, senior scientist MPE and lecturer at the LMU.

The light profile of the galaxy shows a centre with an extremely low and very diffuse surface brightness, much fainter than in other elliptical galaxies. “The light profile in the inner core is also very flat,” explains USM doctoral student Kianusch Mehrgan, who performed the data analysis. “This means that most of the stars in the centre must have been expelled due to interactions in previous mergers.”

To give some perspective, the mass of the supermassive black hole in the center of the Milky Way, Sagittarius A* (pronounced A-Star), is thought to be about 4.6 million solar masses. This newly discovered supermassive black hole is almost nine thousand times heavier.

Readers!
 

My July fund-raiser for Behind the Black is now over. The support from my readers was unprecedented, making this July campaign the best ever, twice over. What a marvelous way to celebrate the website's tenth anniversary!
 

Thank you! The number of donations in July, and continuing now at the beginning of August, is too many for me to thank you all personally. Please forgive me by accepting my thank you here, in public, on the website.
 

If you did not donate or subscribe in July and still wish to, note that the tip jar remains available year round.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


 

If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

One comment

  • wayne

    Interesting development.

    two additional factoids from the press release:

    “The Abell 85 cluster of galaxies, consists of more than 500 individual galaxies, is at a distance of 700 million lightyears from Earth.”
    “The ultra-massive black hole sits in the middle of the central galaxy Holm 15A.”

    Serendipitously (although slightly tangential) while looking for new & interesting lectures over the weekend, came across this one. (but have not watched it through yet.)

    Eva Silverstein & Roger Blandford
    “The Physics and Astrophysics of Black Holes and Horizons”
    Stanford University” Applied Physics/Physics Colloquium
    November 13, 2019
    https://youtu.be/yg38-Dpavaw
    1:12:49

    “One of the most striking predictions of the general theory of relativity is the formation of black hole and cosmic horizons sequestering different regions of spacetime. In this talk we will overview recent theoretical and observational developments in this area. At the classical and quantum level, radiation plays an important role in observations and thought experiments. Hawking’s result that black holes radiate raises serious puzzles, while its analogue in early universe cosmology yields a successful quantum theory of the origin of structure. The pursuit of a complete theory of quantum gravity has led to qualitatively new lessons about emergent spacetime structure in the presence of horizons. Turning to observations, the proposition that black holes with masses from three to ten billion times that of the sun are quite common in the universe grew from a conjecture to a conviction.”

Leave a Reply

Your email address will not be published. Required fields are marked *