Ceres has too much water!


Readers!
 
For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
 
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

The uncertainty of science: In a paper released today, scientists puzzle over the amount of water they have detected evaporating from the dwarf planet Ceres, finding that observations by Dawn of its surface do not provide enough water sources to explain the amount of water in its thin atmosphere.

From the abstract:

The dwarf planet Ceres, the largest object in the asteroid belt, is known to contain large amounts of water ice, and water vapor was detected around it. Possible sources of the water are surface exposure of ice through impacts and subsequent sublimation when heated by sunlight, or volcanic activity. It turns out that with either process it is difficult to create sufficient water vapor to explain the observations. This means that the geological processes on Ceres are not fully understood.

They propose several possible explanations for the discrepancy. Either the measurements of evaporation are wrong, or they have not fully mapped the surface water sources on Ceres. Either or both are certainly possible, as there are great uncertainties here.

To me, the most interesting quote from their paper however is the amount of water discovered. Besides finding water on the surface at nine locations “localized on crater floors or slopes, and generally in or close to shadows,” they also found a lot of water under the surface.

The gamma ray and neutron detector on Dawn discovered a global ice‐rich layer in the subsurface of Ceres, at a depth of ~1 m in equatorial regions and much closer to the surface in polar regions. The estimated abundance of ice in this layer is ~10%. … Evidence for ice on depth scales of a few kilometers is [also] reported by Sizemore et al. (2018). From the analysis of geomorphological features, they find that the distribution of ice is heterogeneous on scales of 1 km to hundreds of kilometers.

In other words, Ceres has a lot of water below the surface, even if the evaporation rate observed by Dawn does not at present match the amount of water vapor observed surrounding Ceres.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *