Conscious Choice cover

From the press release: In this ground-breaking new history of early America, historian Robert Zimmerman not only exposes the lie behind The New York Times 1619 Project that falsely claims slavery is central to the history of the United States, he also provides profound lessons about the nature of human societies, lessons important for Americans today as well as for all future settlers on Mars and elsewhere in space.

 
Conscious Choice: The origins of slavery in America and why it matters today and for our future in outer space, is a riveting page-turning story that documents how slavery slowly became pervasive in the southern British colonies of North America, colonies founded by a people and culture that not only did not allow slavery but in every way were hostile to the practice.  
Conscious Choice does more however. In telling the tragic history of the Virginia colony and the rise of slavery there, Zimmerman lays out the proper path for creating healthy societies in places like the Moon and Mars.

 

“Zimmerman’s ground-breaking history provides every future generation the basic framework for establishing new societies on other worlds. We would be wise to heed what he says.” —Robert Zubrin, founder of founder of the Mars Society.

 

Available everywhere for $3.99 (before discount) at Amazon, Barnes & Noble, and all ebook vendors, or direct from the ebook publisher, ebookit. And if you buy it from ebookit you don't support the big tech companies and I get a bigger cut much sooner.


Confirmed: Ryugu is a rubble pile

Close-up of Ryugu's surface
Click for source paper [pdf].

At a special session today dedicated to results from the Hayabusa-2 probe to the asteroid Ryugu at the 50th Lunar and Planetary Science Conference in Texas, scientists confirmed from numerous data and images that the asteroid has a low density, is covered with boulders and pebbles, is very porous, and is thus a rubble pile that is held together by gravity, barely.

From their lead presentation [pdf]:

The estimated total porosity is even higher than that of rubble-pile asteroid Itokawa (44 ± 4%), indicating that asteroid Ryugu is also a rubble pile. This is consistent with a theory arguing that all Solar System bodies with diameter of ~1 km should be rubble piles and might have formed from reaccumulation of fragments generated by catastrophic disruption events of ~100-km sized parent bodies.

They also posit that the asteroid’s diamond shape is caused by the asteroid’s 3.5 hour rotation, which causes its weak rubble pile structure to be easily pulled to the equator, and then outward.

Another paper [pdf] did crater counts, and found that there are fewer large craters than one would expect.

The density of large craters (D>100 m) on Ryugu is lower than the empirical saturation level and its slope is steeper than that of the saturated distribution, suggesting that craters larger than 100 m are not saturated and the size distribution reflects the crater production function. However, craters smaller than 100 m are significantly under-saturated, suggesting that some crater erasure processes such as seismic shaking and armoring effect are active on the Ryugu surface. Based on cratering chronology model for the main belt, the surface age of Ryugu is estimated to be 5–200 [million years] from the size–frequency distribution of craters larger than 100 m.

In other words, this rubble pile is constantly being shaken by its rotation and time and later impacts, which steadily rewrites the surface.

If this asteroid was headed to Earth, I imagine the only safe solution to prevent disaster would be to slowly and gently deflect it so it only flies past. To do this will require an arrival far in advance of the schedule impact, to give time for the deflection process to work.

Readers!
 

I must unfortunately ask you for your financial support because I do not depend on ads and rely entirely on the generosity of readers to keep Behind the Black running. You can either make a one time donation for whatever amount you wish, or you sign up for a monthly subscription ranging from $2 to $15 through Paypal or $3 to $50 through Patreon.


Your support will allow me to continue covering science and culture as I have for the past twenty years, independent and free from any outside influence.


Your support is even more essential to me because I not only keep this site free from advertisements, I do not use the corrupt social media companies like Google, Twitter, and Facebook to promote my work. I depend wholly on the direct support of my readers.


You can provide that support to Behind The Black with a contribution via Patreon or PayPal. To use Patreon, go to my website there and pick one of five monthly subscription amounts, or by making a one-time donation. For PayPal click one of the following buttons:
 


 

Or with a subscription with regular donations from your Paypal or credit card account:


 

If Patreon or Paypal don't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 

Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652
 

Or you can donate by using Zelle through your bank. You will need to give my name and email address (found at the bottom of the "About" page). The best part of this electronic option is that no fees will be deducted! What you donate will be what I receive.

5 comments

  • John

    Bennu also seems to be a rubble pile. I wonder how many asteroids are rubble piles and how many are solid chunks of rock.

    Is a loosely bound, low density, porous rubble pile less of an impact threat than a solid asteroid?

    Maybe piles would tend to break up into their constituent small rubbles- which may not make it through the atmosphere and would spread less damage over a wider area.

  • jburn

    I once observed concrete poured into a hole with rebar to reinforce it. Immediately afterward a vibrating tool was shoved into the mix causing the concrete to become less viscous (in appearance?) and flow around everything more consistently, eliminating most of the air pockets.

    I can’t help wondering if a spacecraft landed on one of these objects and were vibrated, would it sink below the surface? A potential natural shielding for a habitation or method to submerge an explosive device, or shake it apart to be scattered like sand in solar wind.

    Yeah, sci-fi stuff but fun to imagine…..

  • fred K

    What would be the effect would be of a very large gamma ray pulse you’d produce in a stand-off nuclear bomb detonation? Seems like a thin surface of a hemisphere would vaporize resulting in a push to the rubble pile.

    It is not clear if this would tend to push the asteroid more or less as a whole, or if it would tend to disrupt the asteroid into lots of little fragments.

    I doubt my intuition, and I tend to doubt any opinion on the subject. It would be interesting to test this. Too bad we don’t live in the 1950s anymore.

  • MDN

    It seems to me that a penetrating nuke (bunker buster style) should be quite effective in dispersing a body such as this, rendering it essentially harmless as a diffuse cloud of rubble with no constituent pieces big enjough to present a significant threat should they strike Earth. That is not to say you might not suffer some number of Chelyabinsks, but you’d avoid a Tanguska or worse, even with a limited lead time to react. And think of the meteor showers we’d get to enjoy for decades+ thereafter.

    If further exploration proves rubble piles to be the norm and not exceptions, I suggest a test case would be warranted as we have all the tech, and could field a standing defense system quickly should it prove effective.

  • Vic

    About the near-Earth asteroids’ rubble-pile composition:
    “We think they’re very loose aggregates. They’re not solid through and through,” Melissa Morris, OSIRIS-REx deputy program scientist at NASA Headquarters in Washington, D.C.
    So it’s unlikely that the kinetic impact method will work – such composition will prevent shock wave propagation and proper impulse transfer.

    But in any case deflecting potentially hazardous bodies by evaporating their material using highly concentrated sunlight is the only method that meets all of the following criteria: scalability up to global-threat NEO sizes, sufficient thrusting power, environmentally friendliness, and low cost.

    An improved concept for such solar-based deflection using an innovative concentrating collector was proposed and substantiated in 2013 (see: https://link.springer.com/article/10.1007%2Fs11038-012-9410-2; also a short demo-video: https://www.youtube.com/watch?v=9u7V-MVeXtM).

Readers: the rules for commenting!

 

No registration is required. I welcome all opinions, even those that strongly criticize my commentary.

 

However, name-calling and obscenities will not be tolerated. First time offenders who are new to the site will be warned. Second time offenders or first time offenders who have been here awhile will be suspended for a week. After that, I will ban you. Period.

 

Note also that first time commenters as well as any comment with more than one link will be placed in moderation for my approval. Be patient, I will get to it.

Leave a Reply

Your email address will not be published. Required fields are marked *