Did the Moon’s axis shift 3.5 billion years ago?

For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.


Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:

If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652


You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

The uncertainty of science: Because the concentrations of ice on the moon are thought to be located on opposite sides of the planet, both locations 5.5 degrees away from the poles, a team of scientists has proposed that these locations were once the Moon’s poles and that the axis got shifted 3.5 billion years ago when a gigantic volcanic hotspot on the surface erupted.

He and his colleagues assumed that when the ice was deposited, it was centered on the poles. But what kind of event could have moved the poles by 5.5°? Known asteroid impacts were too small or in the wrong location to do the job. Instead, the team hypothesizes that a 3.5-billion-year-old hot spot could have nudged the poles to their present-day position. Pouring out enormous amounts of lava, that hot spot created Oceanus Procellarum, the vast dark spot on the near side of the moon. The Procellarum region is known to have high concentrations of radioactive elements that would have been hot in ancient times. The research team theorizes that this heat would have created a less dense lens in the moon’s mantle that would have caused the axis to wobble into today’s position.

This theory requires that the Moon’s ice is at least this old, which is quite a stretch. Also, if the Procellarum eruption caused a pole shift, I wonder why the other large lunar eruptions, which created the Moon’s other mare, did not shift the poles further and in other directions.


Leave a Reply

Your email address will not be published. Required fields are marked *