Hubble films of movie of a jet firing from a black hole


Readers!
 
For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
 
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

Cool image time! Using images taken by the Hubble Space Telescope over the past two decades astronomers have assembled a movie of the motion of blobs, ejected by a jet from a supermassive black hole at the center of a galaxy.

The jet from NGC 3862 has a string-of-pearls structure of glowing knots of material. Taking advantage of Hubble’s sharp resolution and long-term optical stability, Eileen Meyer of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, matched archival Hubble images with a new, deep image taken in 2014 to better understand jet motions. Meyer was surprised to see a fast knot with an apparent speed of seven times the speed of light catch up with the end of a slower moving, but still superluminal, knot along the string. The resulting “shock collision” caused the merging blobs to brighten significantly.

The movie is below the fold.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *