Pioneer cover

From the press release: From the moment he is handed a possibility of making the first alien contact, Saunders Maxwell decides he will do it, even if doing so takes him through hell and back.

 
Unfortunately, that is exactly where that journey takes him.

 
The vision that Zimmerman paints of vibrant human colonies on the Moon, Mars, the asteroids, and beyond, indomitably fighting the harsh lifeless environment of space to build new societies, captures perfectly the emerging space race we see today.


He also captures in Pioneer the heart of the human spirit, willing to push forward no matter the odds, no matter the cost. It is that spirit that will make the exploration of the heavens possible, forever, into the never-ending future.

 
Available everywhere for $3.99 (before discount) at amazon, Barnes & Noble, all ebook vendors, or direct from the ebook publisher, ebookit.
 

Hubble sees too much infrared energy from gamma ray burst

The uncertainty of science: During a short gamma ray burst (GRB) that was observed in a distant galaxy on May, astronomers were baffled when measurements from the Hubble Space Telescope detected ten times more near infrared energy that they predict from this type of GRB.

GRBs fall into two classes. First there are the long bursts, which are thought to form from the collapse of a massive star into a black hole, resulting in a powerful supernova and GRB. Second there are the short bursts, which scientists think occur when two neutron stars merge.

The problem with this GRB is that though it was short and somewhat similar to other short GRBs across most wavelengths, in the near infrared Hubble detected far too much energy.

“These observations do not fit traditional explanations for short gamma-ray bursts,” said study leader Wen-fai Fong of Northwestern University in Evanston, Illinois.

…Fong and her team have discussed several possibilities to explain the unusual brightness that Hubble saw. While most short gamma-ray bursts probably result in a black hole, the two neutron stars that merged in this case may have combined to form a magnetar, a supermassive neutron star with a very powerful magnetic field. “You basically have these magnetic field lines that are anchored to the star that are whipping around at about a thousand times a second, and this produces a magnetized wind,” explained Laskar. “These spinning field lines extract the rotational energy of the neutron star formed in the merger, and deposit that energy into the ejecta from the blast, causing the material to glow even brighter.”

What is intriguing about their theory is that this merger of two neutron stars simply resulted in a larger neutron star, not a black hole. This new neutron star was also a magnetar and pulsar, but unlike a black hole, it was a still-visible physical object. And yet its creation in this GRB produced more energy.

When GRBs were first discovered, I was always puzzled why so many astronomers seemed to insist there must be a single explanation for them. With time, when two classes of GRBs were discovered, this assumption was then replaced with the equally puzzling insistence that only two types of events explained them.

It seemed to me that that such explosions had too many potential variables, and could easily have a wide range of causes, though all related to the destruction or merger of massive stars. As the data continues to accumulate this now appears increasingly the case.

Readers! My Quick November Fund-Raiser for Behind the Black is now over
 

I cannot thank the numerous people who so generously donated or subscribed to Behind the Black during this fund drive. The response was remarkable, and reflected the steady growth and popularity of the work I have been doing here for the past ten-plus years.


Thank you again!


Though the find-raising campaign is officially over, and I am no longer plastering the main page with requests for help, if you like what you have read you can still contribute, by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below. Your support will allow me to continue covering science and culture as I have for the past twenty years, independent and free from any outside influence.


Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


 

If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to

Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

One comment

  • Jeff Wright

    This may also answer why there seems to be too much gold in space—in the same way gold can be made from mercury immersed in a reactor, heavier elements can come from planetary debris being bombarded, also explaining the fast radio bursts.

    The neutron star may actually lose mass overall in the process, becoming more a high end white dwarf that is a bit wider, with irradiated dense gold or other matter blasted away.

    There is also talk of gravitational molecules orbiting binary black holes

    I wonder if there are other odd interacting events

Readers: the rules for commenting!

 

No registration is required. I welcome all opinions, even those that strongly criticize my commentary.

 

However, name-calling and obscenities will not be tolerated. First time offenders who are new to the site will be warned. Second time offenders or first time offenders who have been here awhile will be suspended for a week. After that, I will ban you. Period.

 

Note also that first time commenters as well as any comment with more than one link will be placed in moderation for my approval. Be patient, I will get to it.

Leave a Reply

Your email address will not be published. Required fields are marked *