Magnetism helps shape Jupiter’s colorful jet stream bands


Readers!
 
My annual birthday-month fund-raising drive for Behind the Black is now on-going. Not only do your donations help pay my bills, they give me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

The uncertainty of science: New computer models, combined with new data from Juno, suggest that magnetism explains why Jupiter’s colored jet stream bands go as deep below the visible cloud-tops as they do.

Dr Navid Constantinou from the ANU Research School of Earth Sciences, one of the researchers on the study, said that until recently little was known about what happened below Jupiter’s clouds. “We know a lot about the jet streams in Earth’s atmosphere and the key role they play in the weather and climate, but we still have a lot to learn about Jupiter’s atmosphere,” he said. “Scientists have long debated how deep the jet streams reach beneath the surfaces of Jupiter and other gas giants, and why they do not appear in the sun’s interior.”

Recent evidence from NASA’s spacecraft Juno indicates these jet streams reach as deep as 3,000 kilometres below Jupiter’s clouds.

Co-researcher Dr Jeffrey Parker from Livermore National Laboratory in the United States said their theory showed that jet streams were suppressed by a strong magnetic field. “The gas in the interior of Jupiter is magnetised, so we think our new theory explains why the jet streams go as deep as they do under the gas giant’s surface but don’t go any deeper,” said Dr Parker.

This theory is intriguing, but very tentative, to put it mildly.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *