New evidence of lakes and streams in Mars’ recent past


Readers!
 
For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
 
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

Using data from three different orbiters scientists have mapped out a region of lakes and streams on Mars that appear to have contained liquid water a billion years after the red planet is believed to have dried up.

To bracket the time period when the fresh shallow valleys in Arabia Terra formed, scientists started with age estimates for 22 impact craters in the area. They assessed whether or not the valleys carved into the blankets of surrounding debris ejected from the craters, as an indicator of whether the valleys are older or younger than the craters. They concluded that this fairly wet period on Mars likely occurred between two and three billion years ago, long after it is generally thought that most of Mars’ original atmosphere had been lost and most of the remaining water on the planet had frozen.

The characteristics of the valleys support the interpretation that the climate was cold: “The rate at which water flowed through these valleys is consistent with runoff from melting snow,” Wilson said, “These weren’t rushing rivers. They have simple drainage patterns and did not form deep or complex systems like the ancient valley networks from early Mars.”

This region, Arabia Terra, is the same area where scientists have found fossilized rivers.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *