Philae’s status on the surface

Please consider donating to Behind the Black, by giving either a one-time contribution or a regular subscription, as outlined in the tip jar to the right or below. Your support will allow me to continue covering science and culture as I have for the past twenty years, independent and free from any outside influence.

European engineers have released an overall status update on Philae’s generally good condition after its landing on Comet 67P/C-G.

Later on 12 November, after analysing lander telemetry, the Lander Control Centre (in Cologne) and Philae Science, Operations and Navigation Centre (SONC, Toulouse) reported;There were three touchdowns at 15:34, 17:25 and 17:32 UTC; in other words, the lander bounced. The firing of the harpoons did not occur. The primary battery is working properly. The mass memory is working fine (all data acquired until lander loss of signal at 17:59 UTC were transmitted to the orbiter). Systems on board the lander recorded a rotation of the lander after the first touchdown. This is confirmed by ROMAP instrument data, which recorded a rotation around the Z-axis (vertical).

The lander did receive some power from the solar panels on Wall No. 2 (technical description of the lander’s solar walls here), but it appears that parts of the lander were in shadow during the time that last night’s surface telemetry were being transmitted.

An additional update here.

Philae is between a rock and a hard place. More specifically, it’s on its side, one leg sticking up in the air — and in the shadows of a looming crater wall a few meters away. Solar panels are receiving only about 1.5 hours of light a day, when the goal was for 6 or 7 hours per day to recharge the lander’s batteries. Drilling into the subsurface would have to wait until the very end of Philae’s 60 hours of battery life — for fear that it could upset the lander. Yet mission leaders were largely upbeat about being alive and doing science. Most of the lander’s 10 instruments were taking data, and engineers were exploring options to use the spring of the lander legs or other ground-poking instruments to jostle the lander into a more favorable position.

Even more here, including the first image from the surface.


One comment

Leave a Reply

Your email address will not be published. Required fields are marked *