Readers!
 

Please consider donating to Behind the Black, by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below. Your support will allow me to continue covering science and culture as I have for the past twenty years, independent and free from any outside influence.


 

Regular readers can support Behind The Black with a contribution via paypal:
 


 

Or with a subscription with regular donations from your Paypal or credit card account:


 

If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 

Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652


Smallest satellite yet detects exoplanet

The smallest satellite yet, a cubesat, has demonstrated the potential of cubesats to do real cutting edge astronomy by successfully detected a known exoplanet.

Long before it was deployed into low-Earth orbit from the International Space Station in Nov. 2017, the tiny ASTERIA spacecraft had a big goal: to prove that a satellite roughly the size of a briefcase could perform some of the complex tasks much larger space observatories use to study exoplanets, or planets outside our solar system. A new paper soon to be published in the Astronomical Journal describes how ASTERIA (short for Arcsecond Space Telescope Enabling Research in Astrophysics) didn’t just demonstrate it could perform those tasks but went above and beyond, detecting the known exoplanet 55 Cancri e.

Scorching hot and about twice the size of Earth, 55 Cancri e orbits extremely close to its Sun-like parent star. Scientists already knew the planet’s location; looking for it was a way to test ASTERIA’s capabilities. The tiny spacecraft wasn’t initially designed to perform science; rather, as a technology demonstration, the mission’s goal was to develop new capabilities for future missions. The team’s technological leap was to build a small spacecraft that could conduct fine pointing control – essentially the ability to stay very steadily focused on an object for long periods.

…The CubeSat used fine pointing control to detect 55 Cancri e via the transit method, in which scientists look for dips in the brightness of a star caused by a passing planet. When making exoplanet detections this way, a spacecraft’s own movements or vibrations can produce jiggles in the data that could be misinterpreted as changes in the star’s brightness. The spacecraft needs to stay steady and keep the star centered in its field of view. This allows scientists to accurately measure the star’s brightness and identify the tiny changes that indicate the planet has passed in front of it, blocking some of its light.

This success is mostly a proof of concept, but it lays the groundwork for less expensive future space astronomy, using low cost cubesats capable of doing what the expensive orbiting space telescopes have done so far.

Pioneer cover

From the press release: From the moment he is handed a possibility of making the first alien contact, Saunders Maxwell decides he will do it, even if doing so takes him through hell and back.

 
Unfortunately, that is exactly where that journey takes him.

The vision that Zimmerman paints of vibrant human colonies on the Moon, Mars, the asteroids, and beyond, indomitably fighting the harsh lifeless environment of space to build new societies, captures perfectly the emerging space race we see today.

He also captures in Pioneer the heart of the human spirit, willing to push forward no matter the odds, no matter the cost. It is that spirit that will make the exploration of the heavens possible, forever, into the never-ending future.

Available everywhere for $3.99 (before discount) at amazon, Barnes & Noble, all ebook vendors, or direct from the ebook publisher, ebookit. And if you buy it from ebookit you don't support the big tech companies and I get a bigger cut much sooner.

One comment

  • LocalFluff

    The full Moon’s diameter is half a degree. That is 30 arc minutes and 1800 arc seconds. A mirror that focuses on a single star, which are point sources without resolution, doesn’t need to be very large. The trick is the stability of the satellite, which is nudged by the Moon and the upper atmosphere and whatnot, and the precision of the photon detector. That this now can be done with a cubesat is great news! One could dedicate a cubesat for every star of interest. Just watching the activity of Sun like stars in the neighborhood might give interesting insights. Perhaps giving cause for a motivated panic for once.

Readers: the rules for commenting!

 

No registration is required. I welcome all opinions, even those that strongly criticize my commentary.

 

However, name-calling and obscenities will not be tolerated. First time offenders who are new to the site will be warned. Second time offenders or first time offenders who have been here awhile will be suspended for a week. After that, I will ban you. Period.

 

Note also that first time commenters as well as any comment with more than one link will be placed in moderation for my approval. Be patient, I will get to it.

Leave a Reply

Your email address will not be published. Required fields are marked *