The neck of Comet 67P/C-G in color


Readers!
 
Scroll down to read this post.
 
For many reasons, mostly political but partly ethical, I do not use Google, Facebook, Twitter. They practice corrupt business policies, while targeting conservative websites for censoring, facts repeatedly confirmed by news stories and by my sense that Facebook has taken action to prevent my readers from recommending Behind the Black to their friends.
 
Thus, I must have your direct support to keep this webpage alive. Not only does the money pay the bills, it gives me the freedom to speak honestly about science and culture, instead of being forced to write it as others demand.

 

Please consider donating by giving either a one-time contribution or a regular subscription, as outlined in the tip jar below.


 

Regular readers can support Behind The Black with a contribution via paypal:

Or with a subscription with regular donations from your Paypal or credit card account:


If Paypal doesn't work for you, you can support Behind The Black directly by sending your donation by check, payable to Robert Zimmerman, to
 
Behind The Black
c/o Robert Zimmerman
P.O.Box 1262
Cortaro, AZ 85652

 

You can also support me by buying one of my books, as noted in the boxes interspersed throughout the webpage. And if you buy the books through the ebookit links, I get a larger cut and I get it sooner.

The neck of Comet 67P/C-G

Rosetta’s high resolution camera has taken a color image of Comet 67P/C-G’s narrow neck, the area where the most plume activity has taken place.

When seen with the human eye, comet 67P/Churyumov-Gerasimenko is grey – all over. With its color filters Rosetta’s scientific imaging system OSIRIS, however, can discern tiny differences in reflectivity. To this effect, scientists from the OSIRIS team image the same region on the comet’s surface using different color filters. If, for example, the region appears especially bright in one of these images, it reflects light of this wavelength especially well.

“Even though the color variations on 67P’s surface are minute, they can give us important clues”, says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany. In a recent analysis performed by the OSIRIS team, the Hapi region clearly stands out from the rest of the comet: while most parts of 67P display a slightly reddish reflectivity spectrum as is common for cometary nuclei and other primitive bodies, the reflection of red light is somewhat lower in this region.

They as yet do not know exactly why the smooth area at the neck has a very slight blueish tinge, though they suspect it is because of the presence of a higher percentage of frozen water.

Share

Leave a Reply

Your email address will not be published. Required fields are marked *