Tag Archives: Curiosity

Curiosity sends down images for the first time in weeks

Good news! For the first time since September 15 Curiosity has sent back images.

The last raw images were received on Sol 2171, equivalent to September 15. Today’s images (Sol 2199) from the front and rear hazard cameras and the two navigation cameras suggest that the engineers have solved the computer issues that prevented the rover from sending its science data to Earth.

No press release has yet been released, but I suspect we shall see something shortly.

Share

Curiosity to switch computers in effort to restore operations

The Curiosity engineering team have decided to switch on-board computers in effort to figure out why the rover has been unable to store and send any data since September 15.

After reviewing several options, JPL engineers recommended that the rover switch from Side B to Side A, the computer the rover used initially after landing.

The rover continues to send limited engineering data stored in short-term memory when it connects to a relay orbiter. It is otherwise healthy and receiving commands. But whatever is preventing Curiosity from storing science data in long-term memory is also preventing the storage of the rover’s event records, a journal of all its actions that engineers need in order to make a diagnosis. The computer swap will allow data and event records to be stored on the Side-A computer.

Side A experienced hardware and software issues over five years ago on sol 200 of the mission, leaving the rover uncommandable and running down its battery. At that time, the team successfully switched to Side B. Engineers have since diagnosed and quarantined the part of Side A’s memory that was affected so that computer is again available to support the mission. [emphasis mine]

As indicated by the highlighted paragraph, the switch does carry some risk. Though they say they have isolated the problems with the A computer, they might be surprised when they turn it on.

Meanwhile, silence continues from Opportunity. After fourteen years of almost continuous rover operations on Mars, the United States have been roverless now for more than two weeks.

Share

Curiosity has problem sending back its stored data

The science team running Curiosity found this week that the rover is suddenly unable to send back its stored data.

Over the past few days, engineers here at JPL have been working to address an issue on Curiosity that is preventing it from sending much of the science and engineering data stored in its memory. The rover remains in its normal mode and is otherwise healthy and responsive.

The issue first appeared Saturday night while Curiosity was running through the weekend plan. Besides transmitting data recorded in its memory, the rover can transmit “real-time” data when it links to a relay orbiter or Deep Space Network antenna. These real-time data are transmitting normally, and include various details about the rover’s status. Engineers are expanding the details the rover transmits in these real-time data to better diagnose the issue. Because the amount of data coming down is limited, it might take some time for the engineering team to diagnose the problem.

On Monday and Tuesday, engineers discussed which real-time details would be the most useful to have. They also commanded the rover to turn off science instruments that were still on, since their data are not being stored. They’re also preparing to use the rover’s backup computer in case they need to use it to diagnose the primary computer. That backup computer was the rover’s primary one until Sol 200, when it experienced both a hardware failure and software issue that have since been addressed.

In other words, the rover is functioning, they can communicate with it in real time, but any data stored on board for some reason is not being transmitted.

Share

Curiosity fails again to drill into Vera Rubin Ridge

For the third time Curiosity has failed to drill into the rock on top of Vera Rubin Ridge.

Last night we learned that our drill attempt on “Inverness” was not successful, reaching only 4 mm into the rock.

The only successful drill attempt on the ridge occurred when they moved down off the top of the ridge to a slightly lower geological layer.

They are moving Curiosity to another candidate drill site on the ridge, where they will try again. While they imply in their reports that it is solely the hardness of the ground that is stopping them, I still wonder if the improvised drill technique, using the robot arm to push down rather than the drill’s jammed feed mechanism, is partly to blame. I would think that they have placed limits on how hard the arm can push to protect it.

Share

Curiosity to drill twice more on Vera Rubin Ridge

Before they will resume the journey up Mount Sharp the Curiosity science team now plans two more drilling attempts on Vera Rubin Ridge.

The rover has never encountered a place with so much variation in color and texture, according to Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. JPL leads the Mars Science Laboratory mission that Curiosity is a part of.

“The ridge isn’t this monolithic thing — it has two distinct sections, each of which has a variety of colors,” Vasavada said. “Some are visible to the eye and even more show up when we look in near-infrared, just beyond what our eyes can see. Some seem related to how hard the rocks are.”

Part of this drilling campaign will also include gaining a better understanding better their improvised drilling technique.

Share

How the Curiosity science team found soft rock for drilling

Link here. They very much wanted drill samples on Vera Rubin Ridge, but had twice found the rock too hard for Curiosity’s drill. So how did they pinpoint the spot, dubbed Stoer, where the drill finally worked?

In the absence of direct data on rock mechanical properties, we came up with three criteria that we could use to try to find a softer rock. (1) Did the bristles of the DRT brush leave scratches on the rocks’ surfaces? While not necessarily a direct indicator of what the rock strength would be when we drilled into it, we could at least say rocks that got scratched with the DRT had a softer surface than those that didn’t. (2) How well exposed are the white calcium sulfate veins? On some rock targets, like Stoer, we clearly see veins. On other targets, like Voyageurs, the veins are recessed into the rock. Recessed veins erode much faster than the surrounding bedrock because the surrounding bedrock is harder. Non-recessed veins tells us the bedrock may be similar in strength to the veins, or, if the veins stick out, the bedrock may be lower in strength. (3) What does the large-scale topography tell us? Broadly, Vera Rubin Ridge is a ridge because it is composed of hard rocks that are more resistant to erosion than their surroundings. We realized we might use this same logic to find softer rocks within the ridge by trying to drill in local topographic lows or at bases of scarps where the bottom of the scarp is eroding more quickly than the hard rocks on top.

The successful drill hole, Stoer, was thus down somewhat from to top of the ridge. As they prepare to move on, it appears they want to try again to drill at the top of the ridge. It also appears that the work described above has maybe found another location there where the rock might be soft enough for the drill.

Share

Curiosity successfully drills another hole

Successful drill hole on Vera Rubin Ridge

Curiosity has finally drilled its first successful hole in the geology layer found on Vera Rubin Ridge.

This weekend’s plan is focused on the Stoer drill hole, the tailings derived from the drill and on portion characterization observations. The portion characterization is done prior to sending samples to the analytical instruments, SAM and CheMin, to ensure that the materials will not pose any threat to the instruments. ChemCam passive and Mastcam multispectral imaging will be taken of the drill tailings, to identify any potential differences between the surface and material from deeper within the drill hole. The ChemCam laser (LIBS) will be used to characterize the Stoer drill hole and a bedrock target “Greian,” which appears to show some colour variations. Mastcam will provide colour documentation for Greian.

In order to find rock soft enough on Vera Rubin Ridge, they had to once again retrace their route, retreating back down off the ridge slightly, to a lower point. The image on the right, cropped to post here, shows the drill hole. If you click on the image you can see the full picture.

With this successful drilling, I suspect they will now finally cross Vera Rubin Ridge and head up Mount Sharp.

Share

How to build a scaled-down version of Curiosity, all by yourself!

JPL has released open-source plans for building a scaled down version of the rover Curiosity at a total cost of only $2,500.

This project is a successor to an earlier educational rover model called “ROV-E,” which received positive responses in schools and museums, NASA said. The Open Source Rover offers a more affordable, less complicated model, and according to agency officials, people can assemble the new model with off-the-shelf parts for about $2,500.

“While the OSR [Open Source Rover] instructions are quite detailed, they still allow the builder the option of making their own design choices,” JPL officials said. “For example, builders can decide what controllers to use, weigh the trade-offs of adding USB cameras or solar panels and even attach science payloads. The baseline design of OSR … will allow users to choose how they want to customize and add to their rover, touching on multiple hardware and software principles along the way.”

I wonder how heavy a home-built rover would be, and whether it could be launched on a Falcon Heavy to Mars.

Share

Another failed drilling attempt by Curiosity

The second attempt by Curiosity to drill into Vera Rubin Ridge was a failure, the rock once again being too hard using the rover’s new improvised drilling technique.

They are now in search of “softer rock.” The scientists very much want to get at least one drill hole in the hematite unit on Vera Rubin Ridge. However, it does appear that the new drill technique, that uses the robot arm to push the drill bit down as its drills, does not provide enough force for some hard geological features.

The failure to drill is in itself not a complete scientific washout. Knowing the hardness of a rock can tell a geologist a great deal about it. Nonetheless, the Curiosity science team seems determined to find something they can drill into on Vera Rubin Ridge.

Share

Mars rover update: July 17, 2018

Summary: Curiosity climbs back up onto Vera Rubin Ridge to attempt its second drillhole since drill recovery, this time at a spot on the ridge with the highest orbital signature for hematite. Opportunity remains silent, shut down due to the global dust storm.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's travels on and off Vera Rubin Ridge

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

In the almost two months since my May 23, 2018 update, a lot has happened, much of which I covered in daily updates. Curiosity found a good drill spot to once again test the new drilling techniques designed by engineers to bypass its stuck drill feed mechanism, and was successful in getting its first drill sample in about a year and a half. The rover then returned uphill, returning to a spot on Vera Rubin Ridge that, according to satellite data, has the highest signature for hematite on the entire ridge. The light green dotted line in the traverse map to the right shows the route Curiosity has taken back up onto Vera Rubin Ridge. The red dotted line shows the original planned route off the ridge and up Mount Sharp.
» Read more

Share

Martian dust storm goes global

Data from orbit and from Curiosity at Gale Crater confirms that the dust storm that has shut down Opportunity is now a global storm, encircling Mars.

The Martian dust storm has grown in size and is now officially a “planet-encircling” (or “global”) dust event.

Though Curiosity is on the other side of Mars from Opportunity, dust has steadily increased over it, more than doubling over the weekend. The sunlight-blocking haze, called “tau,” is now above 8.0 at Gale Crater — the highest tau the mission has ever recorded. Tau was last measured near 11 over Opportunity, thick enough that accurate measurements are no longer possible for Mars’ oldest active rover.

This will be first global storm to occur on Mars since Curiosity landed in 2012, thus giving scientists the best opportunity to study such an event.

Meanwhile, Opportunity remains silent. This does not mean it is dead, but that it doesn’t have enough sunlight to charge its batteries. It might die during this storm if the storm lasts long enough, but we won’t know one way or the other until the storm finally eases.

Share

Curiosity on the march

It appears that, after a descent down off of Vera Rubin Ridge and then spending 30 sols sitting at one spot to do its first drilling in more than a year, Curiosity is about to resume travel up Mount Sharp.

With its newly resurrected drilling capabilities, Curiosity will do one last pass over the Vera Rubin Ridge units, now that the rest of the instrument suite onboard can have access to this and future drill samples.

It appears they will be returning to their planned route, across the ridge and down off it to head up towards one known recurring black streak that might be a seep of underground water.

They have not provided any details about the lab results from the drill sample, but that isn’t surprising. It will take some time to analyze it, and the scientists involved will want the glory of publishing their results once that analysis is complete. What is clear from the update is that the drilling worked, and that this particular drillhole is likely to produce some of the more significant findings from Curiosity.

Share

Curiosity finds methane fluctuates seasonally in Gale Crater

Seasonal methane on Mars

In its second significant science release yesterday (the first relating to the discovery of organics), the Curiosity science team revealed that they have found over almost three Martian years the amount of methane in the atmosphere appears to fluctuate seasonally. The graph on the right illustrates this change.

[The data] show methane rises from just above 0.2ppb in the northern hemisphere winter to a fraction over 0.6ppb in the summer. The team’s best explanation is that methane is seeping up from underground, perhaps from stored ices, and is then being released when surface soils are warmed.

The team cannot positively identify the origin of the methane, but the researchers think they can close down one particular mechanism for its production. This involves sunlight breaking up carbon-rich (organic) molecules that have fallen to the planet’s surface in meteorites.

The variation in ultraviolet light over the course of the seasons is not big enough to drive the scale of the change seen in the methane concentration, says Dr Webster. “We know the intensity of the Sun and this mechanism should produce only a 20% increase in methane during the summer, but we’re seeing it increase by a factor of three,” he explained.

The change could be caused by either a chemical or a biological process. At this time there is no way to determine which.

Share

Curiosity finds evidence of complex carbon molecules

In a study released today, the Curiosity science team announced that earlier drill samples revealed evidence of complex organic carbon molecules, the possible remains of past life.

To unlock organic molecules from the samples, the oven baked them to temperatures of between 600°C and 860°C—the range where a known contaminant disappeared—and fed the resulting fumes to a mass spectrometer, which can identify molecules by weight. The team picked up a welter of closely related organic signals reflecting dozens or hundreds of types of small carbon molecules, probably short rings and strands called aromatics and aliphatics, respectively. Only a few of the organic molecules, sulfur-bearing carbon rings called thiophenes, were abundant enough to be detected directly, Eigenbrode says.

The mass patterns looked like those generated on Earth by kerogen, a goopy fossil fuel building block that is found in rocks such as oil shale—a result the team tested by baking and breaking organic molecules in identical instruments on Earth, at Goddard. Kerogen is sometimes found with sulfur, which helps preserve it across billions of years; the Curiosity scientists think the sulfur compounds in their samples also explain the longevity of the Mars compounds.

Earth’s kerogen was formed when geologic forces compressed the ancient remains of algae and similar critters. It’s impossible to say whether ancient life explains the martian organics, however. Carbon-rich meteorites contain kerogenlike compounds, and constantly rain down on Mars. Or reactions driven by Mars’s ancient volcanoes could have formed the compounds from primordial carbon dioxide. Monica Grady, a planetary scientist at The Open University in Milton Keynes, U.K., believes the compounds somehow formed on Mars because she thinks it’s highly unlikely that the rover dug into a site where an ancient meteorite fell. She also notes that the signal was found at the base of an ancient lake, a potential catchment for life’s remains. “I suspect it’s geological. I hope it’s biological,” she says.

It must be emphasized once again that they have not found evidence of past life. What they have found are the types of molecules that are often left behind by life, but can also form without the presence of life.

This result, from past drillholes in the Murray Formation, explains however why Curiosity headed back downhill to do its most recent drill test.

Curiosity has one last tool to help the team find out: nine small cups containing a solvent that frees organic compounds bonded in rock, eliminating the need to break them apart—and potentially destroy them—at high temperatures. In December 2016, rover scientists were finally prepared to use one of the cups, but just then the mechanism to extend the rover’s drill stopped working reliably. The rover began exploring an iron-rich ridge, leaving the mudstone behind. In April, after engineers found a way to fix the drill problem, the team made the rare call to go backward, driving back down the ridge to the mudstone to drill its first sample in a year and half. If the oven and mass spectrometer reveal signs of organics in the sample, the team is likely to use a cup. “It’s getting so close I can taste it,” says Ashwin Vasavada, Curiosity’s project scientist at the Jet Propulsion Laboratory in Pasadena, California.

The newest drillhole sample has now entered the mass spectrometer. Stay tuned!

Share

Curiosity’s new drilling technique declared a success

In order to bypass a failed feed mechanism in the rover’s drill, Curiosity’s engineering team has declared successful the new techniques they have developed for drilling and getting samples.

They had successfully completed a new drill hole two weeks ago, but are only now are satisfied that the new method for depositing samples in the laboratories will work.

This delivery method had already been successfully tested at JPL. But that’s here on Earth; on Mars, the thin, dry atmosphere provides very different conditions for powder falling out of the drill. “On Mars we have to try and estimate visually whether this is working, just by looking at images of how much powder falls out,” said John Michael Moorokian of JPL, the engineer who led development of the new sample delivery method. “We’re talking about as little as half a baby aspirin worth of sample.”

Too little powder, and the laboratories can’t provide accurate analyses. Too much, and it could overfill the instruments, clogging parts or contaminating future measurements. A successful test of the delivery method on May 22 led to even further improvements in the delivery technique.

Part of the challenge is that Curiosity’s drill is now permanently extended. That new configuration no longer gives it access to a special device that sieves and portions drilled samples in precise amounts. That device, called the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA), played an important role in delivering measured portions of sample to the laboratories inside the rover.

I suspect that they still need to do more tests, and that the new method of shaking off material from the drill itself will not always work. At the same time, it reopens the option of using the drill and getting samples from it, which is a very good thing.

Share

Mars rover update: May 23, 2018

Summary: Curiosity drives down off of Vera Rubin Ridge to do drilling in lower Murray Formation geology unit, while Opportunity continues to puzzle over the formation process that created Perseverance Valley in the rim of Endeavour Crater.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's travels on and off Vera Rubin Ridge

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my April 27, 2018 update, Curiosity has continued its downward trek off of Vera Rubin Ridge back in the direction from which it came. The annotated traverse map to the right, cropped and taken from the rover’s most recent full traverse map, shows the rover’s recent circuitous route with the yellow dotted line. The red dotted line shows the originally planned route off of Vera Rubin Ridge, which they have presently bypassed.

It appears they have had several reasons for returning to the Murray Formation below the Hematite Unit on Vera Rubin Ridge. First, it appears they wanted to get more data about the geological layers just below the Hematite Unit, including the layer immediately below, dubbed the Blunts Point member.

While this is certainly their main goal, I also suspect that they wanted to find a good and relatively easy drilling candidate to test their new drill technique. The last two times they tested this new technique, which bypasses the drill’s stuck feed mechanism by having the robot arm itself push the drill bit against the rock, the drilling did not succeed. It appeared the force applied by the robot arm to push the drill into the rock was not sufficient. The rock was too hard.

In these first attempts, however, they only used the drill’s rotation to drill, thus reducing the stress on the robot arm. The rotation however was insufficient. Thus, they decided with the next drill attempt to add the drill’s “percussion” capability, where it would not only rotate but also repeatedly pound up and down, the way a standard hammer drill works on Earth.

I suspect that they are proceeding carefully with this because this new technique places stress the operation of the robot arm, something they absolutely do not want to lose. By leaving Vera Rubin Ridge they return to the more delicate and softer materials already explored in the Murray Formation. This is very clear in the photo below, cropped from the original to post here, showing the boulder they have chosen to drill into, dubbed “Duluth,” with the successful drill hole to the right.
» Read more

Share

Drilling success for Curiosity

For the first time in more than a year, Curiosity has successfully used its drill to obtain a sample from beneath the surface of Mars.

Curiosity tested percussive drilling this past weekend, penetrating about 2 inches (50 millimeters) into a target called “Duluth.”

NASA’s Jet Propulsion Laboratory in Pasadena, California, has been testing this drilling technique since a mechanical problem took Curiosity’s drill offline in December of 2016. This technique, called Feed Extended Drilling, keeps the drill’s bit extended out past two stabilizer posts that were originally used to steady the drill against Martian rocks. It lets Curiosity drill using the force of its robotic arm, a little more like the way a human would drill into a wall at home.

I plan to post a rover update either today or tomorrow, with more details about this success. Stay tuned!

Share

Mars Odyssey looks down at Curiosity

Gale Crater

The Mars Odyssey team today released an image the spacecraft took of Gale Crater on January 16, 2018. This image, reduced in resolution, is posted on the right and captures the entire region that the rover Curiosity has been traversing for the past six years. If you click on the image you can view the full resolution original.

I have placed Curiosity’s full route since its landing on this image so that we can see where the rover has been. The actual peak of Mount Sharp is a considerable distance to the south and is not visible in this image. (For the full context of the crater and Curiosity’s travels see my March 2016 post, Pinpointing Curiosity’s location in Gale Crater)

The river-like flow feature cutting through the north rim is called Peace Vallis. Scientists think this was formed by water flowing into the crater when the climate of Mars was wetter and there was a lake inside the crater floor.

You can get another perspective of this same view by looking at the panorama looking north that Curiosity took once it climbed up onto Vera Rubin Ridge.

I have said this before, but this Mars Odyssey image once again illustrates how little of Mars we have so far seen. Curiosity has barely begun its climb into the foothills of Mount Sharp. The mile-high mountains that form the rim of Gale Crater are far away, and will not be walked for probably generations. I do not expect any space probe or explorer to enter Peace Vallis for at least a hundred years, since there are so many other places on Mars to visit and Gale Crater has already gotten its first reconnaissance by Curiosity.

The image also gives as a view of Curiosity’s future travels. Based on this October 3, 2016 press release, Curiosity will eventually head into the mouth of the large canyon directly to the south of its present position. Whether the mission will continue up this canyon wash, using it as the route up Mount Sharp, will depend on many things, including the roughness of the terrain in that canyon and the simple question of whether the rover will be able to operate that long.

If it does, the views then from inside that canyon should be quite breathtaking.

Share

Mars rover update: April 27, 2018

Summary: Curiosity’s exploration of Vera Rubin Ridge is extended, while an attempt by Opportunity to climb back up Perseverance Valley to reach an interesting rock outcrop fails.

For a list of past updates beginning in July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's traverse map, Sol 2030

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my March 21, 2018 update, it has become apparent that the Curiosity science team has decided to extend the rover’s research on Vera Rubin Ridge far beyond their original plans. They have continued their travels to the northeast well past the original nominal route off the ridge, as indicated by the dotted red line on the traverse map above. Along the way they stopped to inspect a wide variety of geology, and have now moved to the north and have actually begun descending off the ridge, but in a direction that takes the rover away from Mount Sharp and its original route. As noted in their April 25 update,
» Read more

Share

Mars rover update: March 21, 2018

Summary: Curiosity continues its exploration of Vera Rubin Ridge, including several drilling attempts. Opportunity is halfway down Perseverance Valley.

For a complete list of all past updates going back to July 2016, see my February 8, 2018 update.

Curiosity

Curiosity's traverse map, Sol 1993

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my February 8, 2018 update, the Curiosity science team has apparently been loath to leave Vera Rubin Ridge. They had begun the trek to the northeast that would take them towards the exit ridge heading to the southeast, as indicated by the dotted red line on the traverse map above, but then continued past that planned route to continue to the northeast. Along the way they attempted to drill twice using an improvised approach that they hoped would bypass the drill’s stuck feed mechanism, without apparent success.

The panorama below is looking to the west and south, as indicated by the yellow lines in the image above.
» Read more

Share

Ground too hard for Curiosity’s drill

A second drill attempt by Curiosity, using an improvised drilling technique designed to bypass the failure of the drill’s feed mechanism, once again failed to drill deep enough to obtain a sample.

After two drilling attempts, Curiosity’s drill was not able to dig into the bedrock sufficiently to collect a sample of rock at this location. Curiosity’s engineers are continuing to refine the new drilling method. In the future, this might include adding percussion, which could enable drilling into harder rock.

Either the ground on Vera Rubin Ridge is too hard for Curiosity’s drill, or the new drilling technique does not allow the drill to push with the same force as previously. The update at the link implies the former, but I suspect the latter is a factor as well.

Share

Curiosity attempts to drill with improvised technique

The Curiosity engineering team has made the first attempt to drill in more than a year, using an improvised technique that has the rover arm push the bit into the ground rather than its presently non-function feed mechanism.

This early test produced a hole about a half-inch (1-centimeter) deep at a target called Lake Orcadie — not enough for a full scientific sample, but enough to validate that the new method works mechanically. This was just the first in what will be a series of tests to determine how well the new drill method can collect samples. If this drill had achieved sufficient depth to collect a sample, the team would have begun testing a new sample delivery process, ultimately delivering to instruments inside the rover.

According to the mission update page, for some reason the drill was unable to penetrate the ground very deeply.

They plan to do more tests, with the goal of eventually getting a hole deep enough to provide good samples.

Share

Curiosity science team to attempt first drilling in a year

After a year of tests and engineering rethinking, the Curiosity science team has decided to attempt drilling its first hole in more than a year.

From yesterday’s Curiosity mission update:

Because there is only so much data volume and rover power to go around, performing drill activities must temporarily come at the expense of scientific investigations (although you’d be pressed to find a disappointed science team member this week, as the drilling campaign will bring loads of new scientific data!). As a result, with the exception of some environmental observations by the Rover Environmental Monitoring Station (REMS) instrument, today’s plan does not have any targeted scientific observations within it. Today will instead be dedicated to drill preload activities and imaging for engineering and rover planning purposes in preparation for a full test of the revised drilling operations.

The problem with the drill has been its feed mechanism, the equipment that moves the drill downward into the hole. As designed the robot arm would get planted on the surface to provide stability for the drill, which as it drilled would be pushed downward that that feed mechanism. Last year they found something had clogged that mechanism so that it would not retract properly.

From what I understand, what they have tested and have decided to try instead is to place the drill against the surface in an extended position, and use the arm itself to push the bit downward. The concern is whether the arm can hold the drill steady. They have done some tests and think it can. We shall soon find out.

Share

Mars rover update: February 8, 2018

Summary: Curiosity remains on Vera Rubin Ridge, though it has begun moving toward the point where it will move down off the ridge. Opportunity remains in Perseverance Valley, though it has finally taken the north fork down.

Before providing today’s update, I have decided it is time to provide links to all previous updates, in chronological order. This will allow my new readers to catch up and have a better understanding of where each rover is, where each is heading, and what fascinating things they have seen in the past year and a half.

These updates began when I decided to figure out the overall context of Curiosity’s travels, which resulted in my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. Then, when Curiosity started to travel through the fascinating and rough Murray Buttes terrain in the summer of 2016, I stated to post regular updates. To understand the press releases from NASA on the rover’s discoveries it is really necessary to understand the larger picture, which is what these updates provide. Soon, I added Opportunity to the updates, with the larger context of its recent travels along the rim of Endeavour Crater explained in my May 15, 2017 rover update.

Now to talk about the most recent news from both rovers!
» Read more

Share

Curiosity takes a panorama that shows its entire journey so far

Cool image time! The Curiosity science team has released a panorama taken in October 2017 that looks north across the floor of Gale Crater and shows the rover’s entire journey since it landed in 2012.

Rather than post the image here, I have posted below the fold a video produced by the science team that pans across the entire panorama, and then shows where Curiosity has traveled in that panorama. Look close, and you will realize how truly little of Mars we have so far explored.
» Read more

Share

Mars rover update: January 16, 2018

Summary: Both rovers have moved little in the past month, Opportunity because it is in a good science location and because it must save energy during the winter and Curiosity because it is in a geological location so good the scientists appear to almost be going ga-ga over it.

Curiosity

null

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

In the month since my December 18 update, Curiosity has continued to head south rather than east as originally planned (as indicated by the dotted yellow line in the traverse map to the right). Moreover, the rover has not moved very much, because the science team has decided that there is just too much significant geology in this area on Vera Rubin Ridge, also part of a geological unit they have dubbed the Hematite Unit.

Right now the rover is located at an area they call “Region e,” one of the three patches I have also indicated on the image to the right. From the second update below:

This location is a slight depression with exposed fractured bedrock that appears more “blue” from orbit than the surrounding region. In addition, the orbital evidence and observations from the ground suggest that this location is similar to “Region 10” that we visited just last week, which was shown to have some pretty spectacular small-scale features that were of particular interest to many on the science team. As a result, the team was very excited to reach “Region e” and begin our scientific investigation!

The last few updates on the Curiosity mission update page indicate the excitement the geologists have for this site:
» Read more

Share

Curiosity images small tubelike rock features on Vera Rubin Ridge

tubes on Mars

During Curiosity’s extended science observations in the past month on Vera Rubin Ridge the rover has found a number of rocks with strange tubelike features that remind some scientists of fossils. The image on the right, taken by the rover’s Mars Hand Lens Imager (MAHLI) and cropped and reduced to post here, shows some of these weird tubes.

The origin of these odd features — geological or biological processes — is in TBD limbo at the moment. Regarding trace fossils on Mars, “we don’t rule it out,” Vasavada said, “but we certainly won’t jump to that as our first interpretation.”

Close-up looks at these features show them to be angular in multiple dimensions. That could mean that they are related to crystals in the rock, perhaps “crystal molds” that are also found here on Earth, Vasavada added. Crystals in rock that are dissolved away leave crystal molds, he said.

Still, that’s just one of a few possibilities, Vasavada explained. “If we see more of them … then we begin to say that this is an important process that’s going on at Vera Rubin Ridge,” he said.

The article outlines a number of other possible explanations, including fossil remains. None are convincing at this time, based on the limited data. Nor does Curiosity have the equipment to clarify things much.

Share

A faint seasonal fluctuation of methane on Mars?

The uncertainty of science: Data from Curiosity during its two Martian years on Mars have revealed a faint but distinct seasonal fluctuation in the amount of methane in the local atmosphere, a fluctuation that scientists do not have a good explanation for.

Since landing in 2012, Curiosity has on 30 occasions opened a few valves to the martian night and taken a sniff of the thin, frigid air. In a small, mirrored chamber, it shines a laser through the air sample and measures the absorption at specific wavelengths that indicate methane. At the meeting, Webster reported vanishingly small background levels of the gas: 0.4 parts per billion (ppb), compared with Earth’s 1800 ppb.

Where that whiff comes from is the heart of the mystery. Microbes (including those that live in the guts of cows and sheep) are responsible for most of Earth’s methane, and Mars’s could conceivably come from microbes as well—either contemporary microbes or ancient ones, if the methane they produced was trapped underground. But methane can also be made in ways that have nothing to do with biology. Hydrothermal reactions with olivine-rich rocks underground can generate it, as can reactions driven by ultraviolet (UV) light striking the carbon-containing meteoroids and dust that constantly rain down on the planet from space.

Now, add to the methane puzzle the seasonal variation Curiosity has detected, with levels cycling between about 0.3 ppb and 0.7 ppb over more than two martian years. Some seasonality is expected in an atmosphere that is mostly carbon dioxide (CO2), says François Forget, who models the climate of Mars at the Laboratory of Dynamical Meteorology in Paris. In the southern winter, some of that CO2 freezes out onto the large southern polar cap, making the overall atmosphere thinner. That boosts the concentration of any residual methane, which doesn’t freeze, and by the end of northern summer this methane-enriched air makes its way north to Curiosity’s location, Forget says. Seasonal variations in dust storms and levels of UV light could also affect the abundance of methane, if interplanetary dust is its primary source.

But, Webster said at the meeting, the seasonal signal is some three times larger than those mechanisms could explain. Maybe the methane—whatever its source—is absorbed and released from pores in surface rocks at rates that depend on temperature, he said. Another explanation, “one that no one talks about but is in the back of everyone’s mind,” is biological activity, says Mike Mumma, a planetary scientist at Goddard Space Flight Center in Greenbelt, Maryland. “You’d expect life to be seasonal.”

They have a lot of theories, from asteroids to alien life, but none really explains this adequately.

Share

Mars rover update: December 18, 2017

Summary: The scientists and engineers of both Curiosity and Opportunity have route decisions to make.

Curiosity

null

For the overall context of Curiosity’s travels, see Pinpointing Curiosity’s location in Gale Crater.

Since my November 16 update, Curiosity’s travels crossing Vera Rubin Ridge, a geological bedding plain dubbed the Hematite Unit, has continued apace. They however have not been following the route that had been planned beforehand, as shown by the yellow dotted line on the right. Instead, they have headed south, along the red dotted line. For the past week or so they have been doing a variety of research tasks in the same area, analyzing samples taken months before, studying sand deposits, and taking many images of some interesting rock layers.

I also suspect that the lack of movement in the past week is partly because they need to make some route-finding decisions. The planned yellow route shown above appears to be somewhat rough in the full resolution orbital image. While I suspect they will still head in that direction, I also think they are doing some very careful analysis of this route and beyond, to make sure they will not end up in a cul de sac where the rover will not be able to continue its climb of Mount Sharp.

Opportunity

For the context of Opportunity’s recent travels along the rim of Endeavour Crater, see my May 15, 2017 rover update.
» Read more

Share
1 2 3 7