Ingenuity completes 34th flight using new hazard avoidance software

Overview map
Click for interactive map.

Ingenuity yesterday completed its 34th flight on Mars, a short vertical up-and-down flight lasting only eighteen seconds in order to test just installed new hazard avoidance software.

The tan dotted line on the map to the right shows Ingenuity’s recent flights and ends where it sits today. The white dotted line marks Perseverance’s travels.

Ingenuity’s navigation software was designed to assume the vehicle was flying over flat terrain. When the helicopter is flying over terrain like hills, this flat-ground assumption causes Ingenuity’s navigation software to think the vehicle is veering, causing Ingenuity to start actually veering in an attempt to counter the error. Over long flights, navigation errors caused by rough terrain must be accounted for, requiring the team to select large airfields. This new software update corrects this flat-ground assumption by using digital elevation maps of Jezero Crater to help the navigation software distinguish between changes in terrain and vehicle movement. This increases Ingenuity’s accuracy, allowing the pilots to target smaller airfields going forward.

The new software is part of an effort to use Ingenuity to test helicopter flying in Jezero Crater in preparation for the two sample return helicopters which will eventually land here to grab Perservance’s core samples and bring them to the ascent vehicle for return to Earth.

Hungary to pay $100 million to Axiom for astronaut mission to ISS

Hungary has budgeted $100 million to fly a Hungarian astronaut on a 30 day mission to ISS, arranged as a private mission though the American space company Axiom.

“This is a program which is being carried out with the cooperation of the American company Axiom Space and its extent is $100 million,” said [Péter Szijjártó, Hungarian foreign minister,] of the initiative. “This will end up in a 30-day-long research mission of a Hungarian astronaut with three other astronauts at the end of 2024 or beginning of 2025, depending on what time NASA confirms access to the International Space Station.”

NASA has yet to award missions to Axiom Space beyond its Ax-2 mission scheduled for the spring of 2023, but is evaluating proposals for two private astronaut missions that could include an Axiom Space flight in that timeframe.

It is clear that negotiations for arranging this mission between Axiom, NASA, and Hungary are on-going. Based on Szijjártó’s description, it is possible that the Hungarian astronaut could fly on a dedicated private Axiom mission to ISS, with two other paying passengers and an Axiom commander, or fly as an extra passenger on a normal ISS crew rotation flight. Furthermore, the ’24 or ’25 launch date suggests the vehicle might not be a Dragon capsule. By that time Boeing’s Starliner should be operational, thus giving Axiom and NASA an alternative. That time frame also corresponds to about when Axiom hopes to launch and dock its own module to ISS.

Nor is Hungary the only foreign country that has signed a deal with Axiom for a manned flight. Both Turkey and Saudi Arabia have agreements as well.

All told, the biggest obstacle right now to this new market is the number of ports on ISS. It seems Axiom has a strong incentive to get its own module launched and attached to ISS as soon as possible, if only to increase the docking ports available for these flights.

Frozen glacial eddies on Mars?

Overview map

Frozen glacial eddies on Mars?
Click for full image.

Cool image time! The photo to the right, cropped, reduced, and enhanced to post here, was taken on August 26, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). Though the science team labels this image vaguely as showing “Features in Mamers Valles,” the features are likely glacial ice since this location is at the western end of the 2,000-mile-long northern mid-latitude strip I dub glacier country, where glacial features are seen everywhere.

The white dot marks this picture’s location in Mamers Valles, as shown on the overview map above. This particular Martian channel, that meanders in a wildly random manner (including a few sharp ninety degree turns), is theorized [pdf] by some scientists to have formed not by surface flows but by a subterranean drainage that created voids. On the surface the voids caused sagging, collapses, and the eventual formation of the surface channel.

Under such conditions, any ice in the channel would not necessarily have a clear flow direction, thus providing an explanation (though hardly certain) of the eddy-like shape of these features.

Webb makes its first detailed survey of an exoplanet’s atmosphere

Astronomers have now completed the first detailed survey of an exoplanet’s atmosphere using the Webb Space Telescope, looking at a gas giant about one third the mass of Jupiter about 700 light years away.

Using three of its instruments, JWST was able to observe light from the planet’s star as it filtered through WASP-39b’s atmosphere, a process known as transmission spectroscopy. This allowed a team of more than 300 astronomers to detect water, carbon monoxide, sodium, potassium and more in the planet’s atmosphere, in addition to the carbon dioxide. The gives the planet a similar composition to Saturn, although it has no detectable rings.

The team were also surprised to detect sulfur dioxide, which had appeared as a mysterious bump in early observation data. Its presence suggests a photochemical reaction is taking place in the atmosphere as light from the star hits it, similar to how our Sun produces ozone in Earth’s atmosphere. In WASP-39b’s case, light from its star, slightly smaller than the Sun, splits water in its atmosphere into hydrogen and hydroxide, which reacts with hydrogen sulfide to produce sulfur dioxide.

The data also suggested the clouds in the atmosphere are patchy, and that the planet’s formation process was not exactly as predicted.

These observations are part of a program to study 70 exoplanets during Webb’s first year of operation, using its infrared capabilities to get spectroscopy not possible in other wavelengths.

First commercial passenger spacewalk on Dragon will involve depressurizing entire spacecraft

According to an interview to Space.com by the four crew members on next year’s private manned Dragon flight financed by Jared Isaacman, the spacewalk, the first involving commercial passengers, will include all four passengers, since Dragon will not have an airlock and will be depressurized entirely when the hatch opens.

“We’ve collectively taken the position that we’re all going for an EVA,” Isaacman said, adding that the spacecraft cabin is to be depressurized in a hard vacuum. “Whether you’re sticking your head outside, you are doing an EVA. We are contemplating two people on the outside of the vehicle,” Isaacman said, “and two would be inside making sure that everything is going correct.”

To accommodate the spacewalk, this Crew Dragon will not be outfitted with a transparent dome, as was the case for the Inspiration4 mission.

The mission is presenting targeting March ’23 for launch.

France, Germany, and Italy agree on allowing competition from European rocket startups

Capitalism in space: France, Germany, and Italy yesterday signed an agreement [pdf] whereby they agreed to push European policy-makers to allow competition from independent European rocket startups for launch contracts.

At least, this is what I think they have agreed to. I have read the article and the agreement several times, and remain somewhat unsure of their intent. The agreement is couched in the typical bureaucratic language specifically designed to obscure meaning. The article does little to clarify things.

It appears this is the key language in the agreement:

The proposed acknowledgement of operational European NewSpace micro and mini launch systems for ESA satellite launch service procurements, upon its adoption by Council, would effectively represent a first step towards an evolution of the launch service procurement policy for ESA missions as referred to in the ESA Council Resolution adopted in 2005.

What I gather is that these three countries no longer want European launch contract awards limited to the Arianespace rockets Ariane-6 and Vega-C. They want bidding opened to all European rocket startups, and they want the elimination of rules that require all contracts distributed by quota to European countries.

Germany already has three commercial rocket startups on the verge of their first launch, and apparently wants the European Space Agency to stop favoring Arianespace in launch contracts. That France and Italy are going along with this is significant, since Ariane-6 is dominated by French developers and Vega-C is dominated by Italian developers.

Controllers lose contact with Orion for almost an hour

NASA engineers unexpectedly lost all contact with Orion for 47 minutes just after midnight last night.

NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston unexpectedly lost data to and from the spacecraft at 12:09 a.m. CST for 47 minutes while reconfiguring the communication link between Orion and Deep Space Network overnight. The reconfiguration has been conducted successfully several times in the last few days, and the team is investigating the cause of the loss of signal. The team resolved the issue with a reconfiguration on the ground side.

At present the loss of signal caused no issues with the spacecraft. However, its cause has not yet been pinpointed.

SpaceX successfully launches communications satellite for Eutelsat

SpaceX tonight successfully launched a geosynchronous communications satellite for Eutelsat. This was the third launch that SpaceX has done for this European company, which previously had traditionally been launched by Arianespace. Because of the delays and higher cost to use Arianespace’s new Ariane 6 rocket, the company chose to go with SpaceX instead.

The first stage, which had flown ten times previously, successfully completed its eleventh flight, but was not recovered because all of its fuel was needed to get the satellite to its proper orbit.

The leaders in the 2022 launch race:

53 SpaceX
52 China
19 Russia
9 Rocket Lab
8 ULA

The U.S. now leads China 77 to 52 in the national rankings, but trails the rest of the world combined 80 to 77.

Curiosity’s wheels: Maybe not so bad after all

Comparison of one wheel on Curiosity
To see the original images, go here and here.

Today the science team for the Mars rover Curiosity downloaded more photos of its wheels, a survey taken routinely now after every 500 meters or 1640 feet of travel. Unlike the pictures made available yesterday that showed some of the worst damage to one of Curiosity’s middle wheels, these new images included the wheel I have been tracking since 2017 as a baseline to see if further damage has occurred.

The photos to the right show that wheel, with the top photo from August and the bottom created from two pictures taken on November 20, 2022. The numbers indicate the matching treads. The “+” sign in the top image indicates a location where new damage was spotted in August.

As you can see, this wheel does not appear to have experienced any additional damage in the more than three months since that August update. While the damage to Curiosity’s wheels remains very concerning, it does appear based on this one wheel that — despite the generally very rough terrain the rover has been traversing since it entered the foothills of Mount Sharp — the wheels in general seem to be holding up.

Though I have not done a careful comparison of these new wheel images with earlier ones, none of the new images appear to show any additional significant damage. It appears that the travel criteria the science team adopted years ago — right after discovering the wheel damage — continues to work to protect the wheels. It picks the rover’s path more carefully to avoid sharper rocks, and includes software that stops the rover should it sense it is crossing a rock sharper than desired.

Six of the ten cubesats launched toward the Moon by SLS still working

The Moon as seen by ArgoMoon
Click for full image.

Of the ten cubesats launched toward the Moon by SLS last week, six are still working while four have problems that are likely killing their missions.

The photo to the right, cropped, reduced, and sharpened to post here, was taken by ArgoMoon, an Italian cubesat that is working perfectly. The large impact basin visible is Orientale Basin, located just on the edge of the visible face of the Moon but partly hidden on the far side.

A summary of the status of all ten can be found here. Of the other five still functioning properly, all have been able to maintain proper communications.

Possibly the biggest disappointment however is the failure of Japan’s Omotenashi lander, which was going to attempt a lunar soft landing. Shortly after launch it began tumbling, and engineers were never able to regain full control or communications. The landing attempt has now been abandoned.

Side note: Orion itself also captured some images as it zipped past the Moon yesterday, but they do not appear as high quality as ArgoMoon’s pictures.

Astronomers spot asteroid mere hours before it burned up in Earth’s atmosphere

For only the sixth time, astronomers this past weekend were able to image an asteroid just before it hit the Earth’s atmosphere and burned up over Canada.

The mini-asteroid, less than 3 feet (1 meter) wide, was spotted by astronomer David Rankin at Mount Lemmon Observatory in Arizona, according to SpaceWeather.com. Subsequent observations by other astronomers confirmed that the rock, coming from the direction of the main asteroid belt between the orbits of Mars and Jupiter, was on a collision course with Earth.

Only three hours after the first detection, the object, since dubbed C8FF042, sliced through the sky above Canada and landed in Lake Ontario, according to NASA.

While it is believed that most of the meteorite’s pieces that reached the ground fell into Lake Ontario, there is a chance some pieces might still be found along the south coast of the lake between Hamiliton and Niagara Falls.

CAPSTONE enters its planned lunar orbit

After experiencing serious tumbling shortly after launch, engineers have successfully put the technology test smallsat CAPSTONE into its planned lunar orbit (the same to be used by NASA’s Lunar Gateway space station), where it will spend at least six months gathering data.

In addition to studying this unique orbit, CAPSTONE’s mission also includes two technology demonstrations that could be used by future spacecraft. The Cislunar Autonomous Positioning System, or CAPS, is a navigational software developed by Advanced Space that would allow spacecraft operating near the Moon to determine their position in space without relying exclusively on tracking from Earth. CAPSTONE will demonstrate this technology by communicating directly with NASA’s Lunar Reconnaissance Orbiter, which has been in orbit around the Moon since 2009. CAPSTONE will also demonstrate one-way ranging using a chip-scale atomic clock, which could allow spacecraft to determine their position in space without the need for a dedicated downlink to ground stations.

CAPSTONE is also demonstrating a third technology as well as the use of capitalism in space. The third technology is demonstrating the viability of using a tiny inexpensive smallsat for these kinds of interplanetary missions. The capitalism is that CAPSTONE was built by a private company, Terran Orbital, not NASA, and is being operated by another private company, Advanced Space, not NASA. It was also launched by a private company, Rocket Lab, not NASA. All three have proved or are proving that it is faster and cheaper for the government to merely act as the customer to private enterprise, rather than being the builder/operator and boss.

ABL’s RS1 rocket has another abort at launch

In making its third attempt to launch its first RS1 rocket, ABL engineers experienced their second abort at T-0, with the rocket shutting down just as its engines ignited.

The first attempt on Monday, Nov. 14, was scrubbed due to off-nominal data on the first stage during propellant loading. A second attempt on Thursday, Nov. 17, was aborted due to turbopump oxygen inlet conditions at engine ignition. The most recent attempt on Monday, Nov. 21, was aborted during engine ignition at T-1.75 seconds.

The company is now targeting December 7th for their fourth launch attempt. The rocket carries two customer cubesats, but its main mission is to demonstrate its ability to reach orbit.

InSight still alive

InSight's power levels

The InSight science team today posted another update on the power status of the Mars lander, as shown in the graph to the right.

As of Nov. 21, 2022, InSight is generating an average between 300 and 310 watt-hours of energy per Martian day, or sol. The tau, or level of dust cover in the atmosphere, was estimated at 1.33 (typical tau levels outside of dust season range from 0.6-0.7).

Power levels, while critically low, remained level and sufficient to run the seismometer, though nothing else. At the beginning of the month the science team said these levels would only allow operations for a few more weeks, but here we are, a few weeks later, and InSight is still alive, though barely.

At this moment the situation is essentially day-to-day. If the lander misses two scheduled communications sessions, they will declare it dead. So far, that has not happened.

New serious damage to Curiosity’s wheels?

New damage to Curiosity's wheels?
Click for original image.

I must start this post with a strong caveat. The serious damage, as posted to the right, of the zig-zag growser treads on one of Curiosity’s wheels that was photographed by one of the rover’s cameras yesterday and downloaded today, could very well not be new damage. As noted in a report in June:

The team discovered that the left middle wheel had damaged one of its grousers, the zig-zagging treads along Curiosity’s wheels. This particular wheel already had four broken grousers, so now five of its 19 grousers are broken.

The damaged wheel to the right appears to be that left middle wheel. This photo thus might simply be documenting the damage noted in June, and not new damage. Since Curiosity has six wheels (three on each side), the middle wheels like this one are likely slightly less critical and can be worked around should it no longer function well.

Nonetheless, the damage to these growsers is of concern. Previously, the wheel damage has consistently involved breakage in the metal plates between the growsers. Though the science team noted in that June report that it has “proven through ground testing that we can safely drive on the wheel rims if necessary”, the team also said that it did not think that was going to happen soon.

Based on this image, however, it is happening, at least on one wheel. Fortunately, a review of all the images downloaded yesterday does not show any other broken growsers on any other wheel, though the image survey is not thorough and does not cover the entire surface of every wheel. For example, I could not identify any images of the damaged sections of the wheel that I have been tracking since 2017. It could be that the photo’s orientation this time was significantly different, making it difficult to find a match. It could also be that the damage had increased so much that no match with an earlier photo was easily possible. Or it could simply be that the same section on the wheel was not photographed this time.

Either way, the damage on this middle wheel foreshadows the rover’s eventual future, a future that is likely getting closer because of the roughness of the mountain and rocky terrain that Curiosity is presently traveling, and appears to have no end as it now climbs Mount Sharp.

Smeared colliding galaxies

Smeared colliding galaxies
Click for full image.

Cool image time! The photo to the right, cropped and reduced to post here, was taken by the Hubble Space Telescope as part of its continuing program to collect images of unusual galaxies that had previously not been observed at high resolution.

The Arp-Madore catalogue is a collection of particularly peculiar galaxies spread throughout the southern sky, and includes a collection of subtly interacting galaxies as well as more spectacular colliding galaxies. Arp-Madore 417-391, which lies around 670 million light-years away in the constellation Eridanus in the southern celestial hemisphere, is one such galactic collision. The two galaxies have been distorted by gravity and twisted into a colossal ring, leaving the cores of the two galaxies nestled side by side.

It is likely that this collision has been going on for many millions of years, and will not be over for many millions of years to come. In the end the two galaxies will likely merge into one whose final shape cannot be predicted.

Orion successfully enters its preliminary lunar orbit

NASA’s Orion capsule today successfully completed a 2.5 minute engine burn this morning to put it in its preliminary lunar orbit around the Moon.

At the time of the burn, Orion was 328 miles above the Moon, travelling at 5,023 mph. Shortly after the burn, Orion passed 81 miles above the Moon, travelling at 5,102 mph. At the time of the lunar flyby, Orion was more than 230,000 miles from Earth.

The outbound powered flyby burn is the first of two maneuvers required to enter the distant retrograde orbit around the Moon. The spacecraft will perform the distant retrograde orbit insertion burn Friday, Nov. 25, using the European Service Module. Orion will remain in this orbit for about a week to test spacecraft systems.

NASA has been bragging that when this orbit sends Orion 40,000 miles past the Moon, it will be the farthest a man-rated spacecraft has flown from Earth since Apollo. Though true, this fact is somewhat trivial. First, SpaceX could have easily put a Dragon capsule on its first Falcon Heavy launch, instead of a Tesla, and sent that capsule into interplanetary space beyond Mars. Second, Orion is not capable of taking any astronauts farther than lunar orbit. Thus, NASA’s achievement here is somewhat overblown. Orion is not an interplanetary spaceship. It remains nothing more than an overpriced, overweight, and over-designed ascent-descent manned capsule.

Chinese seize space debris being towed by Filippino sailors

According to Filippino Navy officials, after their sailors had captured and was towing a piece of space floating rocket debris back to shore, the Chinese Coast Guard arrived and forcibly seized it, cutting the tow line.

As they were traveling back to the island, “they noticed that a China coast guard vessel with bow number 5203 was approaching their location and subsequently blocked their pre-plotted course twice,” Carlos said in a statement.

The Chinese coast guard vessel then deployed an inflatable boat with personnel who “forcefully retrieved said floating object by cutting the towing line” attached to the Filipino sailors’ rubber boat. The sailors decided to return to their island, Carlos said, without detailing what happened.

Chinese officials denied this, saying they took possession after a “friendly consultation.”

Whether or not the Chinese took this debris by force or not, the fact remains that it existed, indicating once again that China is dropping rocket parts indiscriminately on other nations. In this case the debris probably came from either a first stage or a strap-on booster, released shortly after the launch from a low enough altitude that it doesn’t burn up in the atmosphere.

Lucy engineers again attempt to complete deployment of solar array

Lucy solar panel graphic
Artist’s impression of solar panel

On November 7, 2022, the Lucy science team made another attempt to complete the deployment of one of the spacecraft’s two solar arrays, as shown in the graphic to the right. After launch that array failed to deploy properly, and though later attempts have gotten it mostly open, it has not latched tight.

On Monday, Nov. 7, the spacecraft was instructed to point toward the Sun and operate the array deployment motors for a short period of time. As expected, the latest attempt deployed the wing incrementally forward, but it did not latch. The operation did succeed in providing the team with data to evaluate the array’s status and ascertain any changes since the last deployment attempt on June 16.

During this analysis, the team identified that a small vibration occurred as the unlatched array interacted with the spacecraft’s attitude controller while the array was pointed toward Earth and at a cold temperature. The vibration did not occur as a result of the deployment activity itself. While this vibration is too small to pose a risk to the spacecraft in its current state, further array deployment attempts have been paused while the attitude controller is updated to resolve this issue. In the meantime, the spacecraft was reoriented so that the array is warmer, and the team found that the vibration is not present. The team will re-evaluate further redeployment activities once the updates to the controller are checked out on the spacecraft.

In other words, engineers have decided to halt further deployment attempts until they understand fully the cause of this vibration.

At present, the spacecraft is in good health, and the array, only a few degrees short of full deployment, is producing more than 90% of its expected power, more than enough to run the full mission.

Colliding glaciers

Overview map

Colliding glaciers

For today’s cool image we return once again to glacier country in the northern mid-latitudes of Mars. The picture to the right, rotated, cropped, reduced, and enhanced to post here, was taken on August 28, 2022 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a spot where I think glacial flows coming from the north and south have collided at a low point. The white dot in the box on the overview map above marks its location, with the inset showing the mesas to the north and south that suggest this flow pattern.

What makes these colliding flows especially cool is the source of the northern flow. It appears that came out of the impact heat from that crater, which caused the ice on the downhill side to flow. You can also see the same phenomenon a short distance to the east, with a much smaller crater, likely a secondary impact from the first.

Note also the glacial fill inside the larger crater. This impact happened on top of older glaciers, but later climate cycles caused more ice to be deposited within the crater afterward. That this glacial fill appears terraced and thus layered also suggests that there were several if not many such later climate cycles.

LightSail-2 completes three-plus year mission, burning up in atmosphere

LightSail-2 sail deployed
LightSail-2, shortly after deployment in 2019.

LightSail-2, an experimental solar sail built by the Planetary Society, finally ended its mission this week, with the test sail burning up in the atmosphere upon re-entry.

LightSail 2 was launched aboard a SpaceX Falcon Heavy rocket in June 2019, settling into an initial orbit at an altitude of around 720 km (450 miles). At that height, the Earth’s atmosphere is still thick enough to create drag, which would threaten to eventually pull the spacecraft down.

But that’s where the plucky little satellite’s special ability came in. Although it’s only the size of a shoebox, LightSail 2 unfurled a big reflective sheet, called a solar sail, about the size of a boxing ring. The idea is that photons from sunlight strike this sail and generate tiny amounts of thrust, allowing the craft to change its orbit.

And LightSail 2 demonstrated this concept beautifully. In three and a half years, the spacecraft completed around 18,000 orbits and traveled 8 million km (5 million miles), adjusting its orbit continuously to keep itself aloft. But all good things must come to an end, and sometime on November 17, drag finally won the tug-of-war and pulled the spacecraft back to Earth.

LightSail-2 was the third time a light sail had been flown in space, with the first, Ikaros, deployed by the Japanese in 2010 and flown in solar orbit through 2012. That mission was successful in using sunlight to accelerate the sail. This was followed by LightSail-1 in 2015. That mission has some communications problems, but eventually succeeded in its main engineering mission by testing the sail deployment system.

Boeing announces major reorganization

Boeing yesterday announced that it is doing a major reorganization of its defense, space, and security divisions.

The action will replace numerous executives while reducing eight different divisions into four.

Such action was long overdue, considering Boeing’s many recent engineering failures, from space (Starliner) to aviation (737-Max), all of which demanded such a reorganization and consolidation, simply to pay the bills if not to fix serious management shortcomings. The bad economy has only made this more urgent.

Japan to stay on ISS to 2030 in exchange for an astronaut flight to Gateway

NASA yesterday announced that Japan has agreed to remain on ISS through 2030, the first international partner to do so, and in exchange will get a Japanese astronaut flight to the Lunar Gateway station.

Under the Gateway Implementing Arrangement, NASA will provide an opportunity for a Japan Aerospace Exploration Agency (JAXA) astronaut to serve as a Gateway crew member on a future Artemis mission. This formally represents the first commitment by the U.S. to fly a Japanese astronaut beyond low-Earth orbit aboard NASA’s Space Launch System (SLS) rocket and Orion spacecraft.

I remain very doubtful in the long run these flights will occur on SLS, which simply cannot launch frequently enough to make the entire program viable. More likely with time the rocket will be replaced by other commercial carriers.

1st suborbital launch by Indian private company

Skyroot, a commercial rocket startup in Indian, yesterday became the first Indian company to complete a rocket launch, sending its Vikram-S suborbital rocket on a short flight.

I have embedded the launch below, cued to just before lift-off. The launch itself, which lasted only about six minutes, reached a elevation of just under 56 miles, tested of the rocket’s first stage, as well as a number of other systems.
» Read more

SpaceX cancels launch after reviewing static fire test data

After a review of the test data produced during its standard dress rehearsal countdown and static fire prior to launch, SpaceX decided to cancel a Falcon 9 launch yesterday, carrying 52 Starlink satellites.

The first stage booster had previously launched 10 times, though it is not clear if this is the cause of the delay.

It’s not the first time SpaceX has delayed a launch indefinitely after a static fire test, but it is the first time in years. SpaceX semi-regularly stands down from launch attempts to conduct inspections or complete minor repairs or component replacements when data is amiss or contradictory, but those plans tend to mention the next launch target. This time, even SpaceX’s website has been scrubbed to say that “a new target launch date [will be announced] once confirmed.”

The last time a prelaunch static fire was explicitly blamed for a launch delay was in August 2019, when SpaceX fired up a Falcon 9 rocket ahead of its Amos-17 launch, didn’t like what it saw, decided to replace a valve on the booster, and then conducted a second static fire test to clear the rocket to launch. It’s possible that Starlink 2-4’s sequence of events will end up being similar.

ABL’s RS1 rocket aborts at ignition

The first test launch of ABL’s RS1 rocket aborted at T-0 yesterday, just as the rocket ignited its engines.

From a company tweet:

RS1 aborted terminal count during ignition. The vehicle is healthy, and the team is setting up to offload propellant for today. More information to come on our next opportunity.

Though it appears all is well with the rocket, the company has not yet announced a new launch date. The present launch window closes November 21, 2022.

Webb finding more galaxies in early universe than expected

The uncertainty of science: Astronomers using the Webb Space Telescope are finding in very early universe many more galaxies that are also far more developed then had been predicted.

The Webb observations nudge astronomers toward a consensus that an unusual number of galaxies in the early universe were so much brighter than expected. This will make it easier for Webb to find even more early galaxies in subsequent deep sky surveys, say researchers.

“We’ve nailed something that is incredibly fascinating. These galaxies would have had to have started coming together maybe just 100 million years after the big bang. Nobody expected that the dark ages would have ended so early,” said Garth Illingworth of the University of California at Santa Cruz, a member of the Naidu/Oesch team. “The primal universe would have been just one hundredth its current age. It’s a sliver of time in the 13.8 billion-year-old evolving cosmos.”

Erica Nelson of the University of Colorado in Boulder, a member of the Naidu/Oesch team, noted that “our team was struck by being able to measure the shapes of these first galaxies; their calm, orderly disks question our understanding of how the first galaxies formed in the crowded, chaotic early universe.”

The galaxies are smaller, more compact than present day galaxies, and appear to be forming stars at a tremendous rate. Because their distances, presently estimated, still need to be confirmed by spectroscopy, these conclusions remain somewhat tentative though quite alluring.

We should not be surprised if in the next two years data from Webb will overturn almost all the theories that presently exist about the Big Bang and its immediate aftermath.

Ispace announces new launch date and landing site on Moon for Hakuto-R lander

Lunar map showing Hakuto-R's landing spot

Ispace today announced that its commercial lunar lander, Hakuto-R, will now launch on a Falcon 9 rocket on November 28, 2022 and will arrive on the Moon in 54-mile-wide Atlas Crater in April 2023.

The white dot on the map to the right shows this landing spot, in the crater’s northern quadrant. Atlas is distinct in that its crater floor has many large fissures with the crater’s interior rim terraced, but this area is relatively smooth.

The spacecraft will carry seven commercial payloads, including the UAE rover Rashid, which is about the size of a small Radio Flyer wagon and will operate on the surface for about two weeks (one lunar day). It has cameras, whose primary research function will be to photograph the variety of different materials attached to the rover’s wheels to see how each interacts with the Moon’s very harsh and abrasive dust.

Rocket Factory Augsburg signs deal to use German engine test facility

Rocket Factory Augsburg (RFA), one of three German rocket startups pushing to begin test launches next year, has signed a contract with Germany’s aerospace agency DLR to use of its engine test facility for static fire tests of its Helix engine.

RFA announced the deal at the Space Tech Expo Europe in Bremen, Germany, Nov. 16, which will allow RFA to use the P2.4 test site in Lampoldshausen. DLR provides the basic infrastructure while RFA brings its own test stand and supporting infrastructure.

Test stands in Lampoldshausen have so far only been used by DLR, the European Space Agency and ArianeGroup.

The new test stand will add to RFA engine testing capacity already established in Esrange in northern Sweden, where the company has been conducting testing on the Helix engine for the RFA One launcher. Testing will continue in Sweden but the new development simplifies logistics and bureaucracy related to import and export rules. [emphasis mine]

The highlighted sentence is the news. The German government has decided to break the monopoly held by government related operations of these facilities, and open up their use to private independent commercial companies.

RFA says it already has a dozen customers, and hopes to begin commercial launches by ’24.

Canadian rocket startup with balloon for 1st stage wins launch contract

SpaceRyde, a Canadian smallsat rocket startup company that intends to use a stratospheric balloon to act as its first stage before releasing its orbital rocket, has won a contract for four launches from ISILaunch, a Netherlands satellite company.

Customers will pay $250,000 to launch 25-kilogram payloads on SpaceRyde’s Ryder rocket and Flying Spider balloon. The flights are scheduled to begin in 2024. For the SpaceRyde flights, ISILaunch will offer customization including scheduling weeks prior to launch, access to custom orbits and various fairing configurations.

…Stratospheric balloons will serve as the first stage, lifting Ryder rockets through Earth’s atmosphere before rocket engines fire. Ryder’s upper stage, called Black Bay, is designed to remain in orbit, maneuvering and refueling as needed to provide in-orbit servicing and in-space transportation.

The first test flights are scheduled in ’23, with commercial flights starting in ’24. The company apparently is targeting the smallest smallsat market, aiming to win customers with very very low launch prices.

1 113 114 115 116 117 502