New Horizons team picks its next Kuiper Belt target

The New Horizons science team has picked its next Kuiper Belt fly-by target beyond Pluto.

New Horizons will perform a series of four maneuvers in late October and early November to set its course toward 2014 MU69 – nicknamed “PT1” (for “Potential Target 1”) – which it expects to reach on January 1, 2019. Any delays from those dates would cost precious fuel and add mission risk. “2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute (SwRI) in Boulder, Colorado. “Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

The press release includes some silly gobbly-gook about how the science team can’t announce this as its official target because they still have to write up a proposal to submit to NASA, which then must ponder their decision and decree it valid. We all know this is ridiculous. Will NASA sit and ponder and make them miss their target? I doubt it.

The fly-by itself will be really exciting, because this object will truly be the most unusual we will have ever gotten a close look at, as it has spent its entire existence far out in the dim reaches of the solar system.

Comet 67P/C-G goes boom!

Outburst on Comet 67P/C-G

Cool image time! On August 22, just days after its closest approach to the sun, Rosetta caught the outburst, image above, from the larger lobe on Comet 67P/C-G.

The image scale is 28.6 m/pixel and the image measures 29.3 km across. Although the activity is extraordinarily bright even in the original (below), the image above has been lightly enhanced to give a better view of the outline of the nucleus in the lower part of the image, as well as to show the full extent of the activity.

The most interesting images, I think, will actually come later, when the activity dies down and they can bring Rosetta in closer again. We will then be able to compare the nucleus both before and after this outburst, getting a sense of how the comet changes with each close pass to the sun.

Launch of India’s big rocket a success

The competition heats up: India has successfully launched a military communications satellite using its home-built Geosynchronous Satellite Launch Vehicle (GSLV).

Because of India’s bad habit of not giving distinct names to its space vehicles or spacecraft, I have discovered a bit a confusion about the version of GSLV that just launched. This rocket was built entirely in India, but it is the Mark II, not the Mark III, which is a significant upgrade and has so far only had one test flight.

Nonetheless, today’s Mark II launch is the second success in a row for the India-built version. Considering the number of failures of this version in the past, this success is a significant milestone for India’s space effort.

India starts countdown for the launch of its big rocket

The competition heats up: India has begun the countdown for the third launch of its entirely homebuilt Geosynchronous Satellite Launch Vehicle (GSLV) rocket.

The launch is set for Thursday, and is attempting for the first time to place an actual payload into orbit, an Indian military communications satellite. Previous launches either failed with earlier versions of the rocket, or were carrying dummy payloads.

Russia delays first manned Vostochny launch seven years

The heat of competition: Russia has finally admitted that it will not be able to fly manned missions from its new Vostochny spaceport in 2018, and had instead rescheduled that first flight for sometime in 2025.

The reasons were not spelled out, and it was unclear if financial considerations were behind the delay.

Space agency spokesman Mikhail Fadeyev made clear the change of plan in stating: ‘The first manned flight from the Vostochny Cosmodrome is scheduled for 2025 with an Angara-AV5 rocket, according to the federal space programme.’ The move reflected the ‘founding principle of Vostochny as an innovative cosmodrome’, he claimed. Under the plan, the first test flight of the Angara-A5B is scheduled for 2023, while the rocket’s first unmanned flight is slated for 2024.

Russian prime minister Dmitry Medvedev recently visited the spaceport, stressing the importance of the first unmanned launch, due in four months from now, being a success. His statement appeared to allow for the possibility of slippage in this timetable also.

Vostochny was first proposed in 2007, so that means it will take Russia almost two decades to get this spaceport ready for manned flights. Only a government operation, designed to create jobs instead of accomplishing something, takes such an ungodly long time to get finished.

Meanwhile, Russia will continue to use Baikonur for manned flight for at least one more decade.

Cubesats to the Moon!

NASA has chosen three cubesat missions to fly lunar planetary orbiters to the Moon, to be launched on the first SLS flight in 2018.

LunaH-Map, along with a number of other deep-space CubeSats, is a candidate to fly to lunar orbit on Exploration Mission-1, the first flight of NASA’s Space Launch System (SLS), which will be the most powerful rocket ever built and will enable astronauts in the Orion spacecraft to travel deeper into the solar system. NASA will provide several CubeSat missions spots on the maiden SLS mission. LunaH-Map is a 6U (“6 unit”) CubeSat. One “unit” is a cube measuring 4.7 inches on a side; LunaH-Map strings six of these CubeSat building blocks together and weighs as much as a small child (about 30 pounds). …

“NASA has funded three different CubeSats to learn more: Lunar IceCube, Lunar FLASHLIGHT and LunaH-Map. They all look for water in different ways and provide different types of information,” [said principal investigator Craig Hardgrove].

The article is focused on LunaH-Map, not on the other two cubesats, but the fact that NASA plans to use “the most powerful rocket ever built” to launch the first three planetary cubesats, so small they could almost be launched by a model rocket, illustrates some of the problems of the SLS program. Even though that first SLS flight is likely to happen, I suspect that, should it falter for any reason (something that would not surprise me), these cubesats could easily be launched on another rocket, and will be.

Putting SLS aside, however, the building of these first planetary cubesats is a very significant development. It once again signals the way unmanned satellite engineering is evolving, finding ways to build spacecraft smaller and less costly.

A breakthrough in creating fusion power?

A privately funded company has successfully kept a ball of superheated gas stable for a record time, 5 milliseconds, putting them closer to producing fusion power.

“They’ve succeeded finally in achieving a lifetime limited only by the power available to the system,” says particle physicist Burton Richter of Stanford University in Palo Alto, California, who sits on a board of advisers to Tri Alpha. If the company’s scientists can scale the technique up to longer times and higher temperatures, they will reach a stage at which atomic nuclei in the gas collide forcefully enough to fuse together, releasing energy.

Although other startup companies are also trying to achieve fusion using similar methods, the main efforts in this field are huge government-funded projects such as the $20 billion International Thermonuclear Experimental Reactor (ITER), under construction in France by an international collaboration, and the U.S. Department of Energy’s $4 billion National Ignition Facility (NIF) in Livermore, California. But the burgeoning cost and complexity of such projects are causing many to doubt they will ever produce plants that can generate energy at an affordable cost.

Tri Alpha’s and similar efforts take a different approach, which promises simpler, cheaper machines that can be developed more quickly. Importantly, the Tri Alpha machine may be able to operate with a different fuel than most other fusion reactors. This fuel—a mix of hydrogen and boron—is harder to react, but Tri Alpha researchers say it avoids many of the problems likely to confront conventional fusion power plants. “They are where they are because people are able to believe they can get a [hydrogen-boron] reactor to work,” says plasma physicist David Hammer of Cornell University, also a Tri Alpha adviser.

The article does not say how much this success cost the privately-funded Tri Alpha, but it certainly wasn’t in the billions of dollars. Yet, it appears that in less than a decade they have accomplished more than all these big government-funded projects have in the past half century, and for less money.

Does that story sound familiar?

New sharp images of Ceres from Dawn

The Lonely Mountain on Ceres/>

Cool image time! The Dawn science team has released new images of Ceres, including one of a single mountain they have dubbed the Lonely Mountain.

The mountain, located in the southern hemisphere, stands 4 miles (6 kilometers) high. Its perimeter is sharply defined, with almost no accumulated debris at the base of the brightly streaked slope with bright streaks. The image was taken on August 19, 2015. The resolution of the image is 450 feet (140 meters) per pixel.

I have cropped the image and posted it on the right. Be sure to look at the full resolution version. Not only does the mountain have no debris at its base, it truly is lonely. There are no similar features anywhere near it. It almost looks like someone took a shovel of material out of the ground to create the crater immediately to the south and then dumped that material to create the mountain.

Note that the mountain is more like a mesa, with a flat top, which suggests it is the remains of a higher elevation surface that eroded away in the distant past. The geological processes that could have done this however remain quite puzzling at this point.

An update on XCOR’s Lynx suborbital craft

The competition heats up: According to one XCOR official, its first Lynx suborbital spacecraft is 6 to 9 months from launch.

Peck estimated that XCOR is six to nine months away from the Lynx 1’s first flight. The main structure is complete and the wing mounts are being made. Once the craft is put together, the team in Mojave will do ground testing at the Mojave Air & Space Port. Peck cited the longer runway at Mojave and the ability to do extensive testing there without shutting down a commercial airport as reasons for doing the test back in California. …

As the Lynx 1 approaches completion, the team is already starting to work on components for the Lynx 2, according to Peck. Peck described the Lynx 1 as a testing vehicle, while the Lynx 2 will be the vehicle that first transports paying customers into suborbital space. The Lynx 3 will be similar to the 2 except that it will have a dorsal pod to carry experiments and microsatellites. [emphasis mine]

I know many space activists have been repeatedly annoyed at me for my continued skepticism of XCOR, but the highlighted news above, that the Lynx craft under construction is only a test vehicle, illustrates why I am skeptical. Until now XCOR has never stated publicly that this Lynx craft was only for testing. Instead, their press releases and public comments have implied that after testing it would be used for paying passengers.

Then there is this: Their last press release update about Lynx’s construction is no longer available on the web. Nor are other press releases. In my experience, legitimate companies do not put their press releases into the memory hole, they keep them available because they help generate publicity. Companies that make them vanish, however, are usually hiding something, and are also generally the companies that in the end do not accomplish what those press releases promise.

Back in 2012 XCOR promised that Lynx would begin test flights that year. They did not. Delays like this are understandable, and are not a reason by itself to be skeptical. Repeated failures to deliver promises however are reasons to be skeptical. For example, they first announced Lynx to great fanfare in 2008, saying then that they hoped to be flying in two years. I did not believe it then, and I was right.

I truly want XCOR to succeed, but I also am not willing to be a PR hack for them. They need to do it for me to believe them.

Cassini’s last close-up images of Dionne

Dionne on August 17, 2015

Cool image time! NASA has released images from Cassini’s Monday close fly-by of Saturn’s moon Dionne.

The press release itself did not include any of the close-ups for some reasons. You have to dig for them at the site. Go here, here, here, and here to see a few of more interesting, the first of which is a global view taken just before the fly-by. The second is the highest resolution image, with a resolution 10 feet per pixel. The third shows the nighttime surface lit entirely by reflected light from Saturn. The fourth, shown on the right, was taken from an altitude of 470 miles with a resolution of 150 feet to the pixel. It shows the moon’s rolling, pock-marked, and cratered surface, to the horizon.

Russians consider building reusable rocket

The competition heats up: Roscosmos is studying proposals for building a reusable first stage that will use wings to return to the launchpad for later reuse.

The project draft has been created as part of Russia’s 2016-2025 space program. According to Izestia, Russia could spend over 12 billion rubles (around $180 million) on the creation of the reusable first stage before 2025. The newspaper cites space experts as saying that satellite launches could become much cheaper with the use of renewable launchers as they would allow to save millions of dollars on engines installed on the first stage of the rocket. The cost of the engines used on the current expendable launch vehicles is $10-70 million.

I’m not sure how seriously we should take this. The Russians consider lots of proposals, many times leaking the proposals to the press for any number of reasons. Most of those proposals never come to fruition.

Nonetheless, SpaceX’s effort to make its Falcon 9 first stage reusable, thus making it far less expensive than anyone else’s, is clearly influencing the Russians, as it has ULA and the Europeans. They are feeling competitive pressure, and are thus compelled to respond.

Boeing’s 747 is finally heading for retirement

After 45 years of service, Boeing’s 747, the world’s first jumbo jet, is finally facing retirement as airlines consider more modern planes for their fleets.

The plane that so audaciously changed the shape of the world is now on the wrong side of history. Airlines are retiring older 747s – JAL no longer flies them – and Boeing’s attempt at catch-up, the latest 747-8 model, has had technical problems and is selling only very slowly. The air above my garden will not be troubled by 747s for very much longer.

The article gives brief but detailed outline of the 747’s history, and why passengers and pilots still love it. I love it because of this:

The 747 was America at its proud and uncontaminated best. ‘There’s no substitute for cubic inches,’ American race drivers used to say and the 747 expresses that truth in the air. There is still residual rivalry with the upstart European Airbus. Some Americans, referring to untested new technologies, call it Scarebus. There’s an old saying: ‘If it ain’t Boeing, I ain’t going.’

A comparison to the European Concorde is illuminating. The supersonic Anglo-French plane was an elite project created for elite passengers to travel in near space with the curvature of the Earth on one hand and a glass of first growth claret on the other. The 747 was mass-market, proletarianising the jet set. It was Coke, not grand cru and it was designed by a man named Joe. Thus, the 747’s active life was about twice that of Concorde.

A detailed status update on Mars Reconnaissance Orbiter

Link here. The orbiter, which continues to send down spectacular images while acting as a workhorse communications relay for the rovers on the ground, appears to be in reasonable shape. It has enough fuel to operate into the late 2020s. The other known problems appear manageable.

Zurek said the most significant technical issue aboard MRO is in one of the spacecraft’s inertial measurement units used to determine the orbiter’s motion and orientation. Zurek said a laser inside one of the unit’s gyroscopes is showing signs of aging, and ground controllers are trying to coax the sensor along by switching to an identical backup unit.

In the meantime, engineers are working on changing the orbiter’s navigation logic to rely on star trackers in case both navigation sensors go down, Zurek said. One of the gimbals used to point MRO’s power-generating solar panels toward the sun is also sticky, a sign of age-related “arthritis” aboard the spacecraft, Zurek said.

MRO also abruptly switches to its backup “B side” computer on occasion, temporarily interrupting scientific observations for a few days each time. Zurek said the orbiter’s ground team has learned to deal with the problem, which has escaped diagnosis with a root cause.

Of course, there are always the unknown problems that haven’t yet popped up that could be devastating. Let us hope none appear soon, since NASA will not be able to send a replacement until 2022, at the earliest.

Soyuz rocket builder proposes major upgrade

The competition heats up: The head of the Russian company that builds the Soyuz rocket said today that a new upgrade of that rocket could be built and flying by 2022.

Russia’s future Soyuz-5 carrier rocket will be equipped with advanced new engines using ecology-friendly fuel, according to Alexander Kirilin. “One of the distinguishing features of the Soyuz-5 is the use of liquefied natural gas as fuel,” Kirilin said in an interview with RIA Novosti published on Tuesday. “The engines will be developed from scratch, which would allow us to apply a variety of advanced technological and economic characteristics that would make Soyuz-5 competitive on global markets,” Kirilin said. “The design of Soyuz-5 allows the addition of extra side blocks to make it a heavy-class rocket, but we are focusing now on a prototype with operational payload of 9 metric tons,” he added.

At the same time, Kirillin stressed that the Soyuz-5 will not compete with the ongoing development of the Angara family of carrier rockets. [emphasis mine]

Kirillin is doing a political dance with this interview. On one hand he is trying to sell to the Putin government the idea of developing a new version of the Soyuz rocket — thereby giving his company work for decades hence — in order to increase Russia’s ability to compete in the international launch market. On the other hand, he has to convince that same government that this new Soyuz will not compete with Russia’s new Angara rocket.

The two ideas are contradictory, especially if the upgrade allows the Soyuz to be modular and scalable so it can launch larger payloads, like Angara.

Kirillin’s problem is that the only investment capital available to him comes from the government, which now controls the entire Russian aerospace industry. Under this Soviet-style monolithic set-up, he is not allowed to compete with other Russian companies. However, if he doesn’t convince the government to build something, his company will no longer have a reason for existing.

In other words, creating a single government organization to run all of Russia’s space industry, as Putin’s government has done, was very counter-productive in the long run. It discourages competition while naturally causing the industry to shrink.

Lumbering the Redwoods

An evening pause: Tonight’s pause is a challenge. Can you watch this 1940s industrial, describing the lumbering and milling of California redwoods, without feeling outrage or indignation against the work being described? Can you watch it with an open mind, recognizing that trees are renewable?

Or will the environmental brainwashing that our society has undergone since the 1960s cause you to shut your mind and refuse to consider the other side of this story?

Hat tip Phill Oltmann.

Cassini’s last fly-by of Dionne on Monday

Dionne

On Monday August 17 Cassini will make its last close fly-by of Saturn’s moon Dionne, dipping to within 295 miles of the surface.

During the flyby, Cassini’s cameras and spectrometers will get a high-resolution peek at Dione’s north pole at a resolution of only a few feet (or meters). In addition, Cassini’s Composite Infrared Spectrometer instrument will map areas on the icy moon that have unusual thermal anomalies — those regions are especially good at trapping heat. Meanwhile, the mission’s Cosmic Dust Analyzer continues its search for dust particles emitted from Dione.

The image of Dionne above is from a June 16, 2015 fly-by, The diagonal line at the top is Saturn’s rings.

After more than a decade, Cassini’s mission is in its final stages. When completed, we will have no way for decades to get close-up images of this gas giant, its spectacular rings, or its many very different moons.

DARPA awards phase 2 space plane contracts

The competition heats up: The second phase contracts in the development of a reusable space plane have been awarded by DARPA.

DARPA has awarded $6.5 million each to three companies for developmental design work, including Boeing (in partnership with Blue Origin), Northrop Grumman (in partnership with Scaled Composites and Virgin Galactic), and Masten Space Science Systems (in partnership with XCOR Aerospace).

The requirements are that the plane fly 10 times in 10 days, reach Mach 10+, put a 3,000 to 5000 pound payload in orbit, and cost less than $5 million per flight. In this new phase, the companies are to deliver finalized designs by 2016, with prototype development to follow.

NASA considers using Bigelow module for deep space missions

The competition heats up: Rather than build something in-house for gobs of money and decades of work, NASA is considering using Bigelow Aerospace’s largest inflatable modules for its deep space missions.

What has happened is that NASA has signed a joint agreement with Bigelow to study the possibility of using Bigelow’s B330 module as a transport habitat on long flights. The agency really has no choice, as it doesn’t have the funding to develop the necessary large spacecraft for these missions, and Bigelow can provide them to it for much less.

This description of the background of Bigelow’s inflatable modules illustrates why NASA can’t build these itself:

The B330 evolved from the Genesis I and II modules that Bigelow Aerospace had launched into space. Those technology demonstrators were born out of the NASA project known as TransHab. The TransHab was an inflatable module designed for the ISS but was ultimately cancelled in 1999 due to budget constraints. The module would have provided a 4 level 27.5 feet (8.4 meter) diameter habitat for the astronauts.

After TransHab was cancelled, Bigelow worked with NASA on a technology transfer, giving Bigelow Aerospace exclusive rights to the technology. Using this technology, Bigelow designed, built and launched two technology demonstrators. They are still on orbit today. Genesis I was launched in 2006 with it’s sister ship launching in 2007. Both ships tested flight operations processes and on-board electronics and have performed above design specifications. [emphasis mine]

Unlike NASA, as a private company Bigelow was able to build this technology quickly and at a low cost. With the new agreement, the goal will be study the operation of a B330 in independent flight in low Earth orbit. Whether an actual B330 will be build and launched however is not yet clear.

Contract to build upgraded Vega rocket signed

The competition heats up: The European Space Agency today signed a contract to develop an upgraded version of its Vega rocket.

With respect to the VEGA configuration currently in operation, VEGA C aims to increase the load capacity of the orbital launcher up to 50%. Together with a further increase in operational flexibility, while maintaining its unrivalled orbital precision, it is expected to expand the capability to transport in the same flight a larger number of small satellites, in different orbital planes, or larger satellites. The new version of VEGA will be flight qualified in late 2018 for an entry into service as early as 2019. The group of countries which already participated in the development of VEGA, with Italy playing a major role with a 65% participation, welcomes now the entry of Germany.

I get the impression from this article that Vega is being used by ESA to spread the pork around, since to get Ariane 6 built they had to agree to not do so and give the work and control entirely to Airbus Safran. I thus wonder how competitive Vega will truly be.

Orbital ATK orders second Atlas 5 for launching cargo to ISS

In the heat of competition: Even as it has accepted delivery of two new Russian engines to power its Antares rocket, Orbital ATK has ordered a second Atlas 5 rocket to launch its Cygnus cargo capsule to ISS.

I suspect they want to give themselves some cushion time to test and install these new Russian engines prior to an actual launch. In order to fulfill their contract with NASA, however, they have to launch several times next year, thus requiring more replacements for Antares.

Ten years after the Russians did it, NASA finally produces lettuce in space

Lots of news stories today about yesterday’s lettuce feast on ISS, where a Japanese and two NASA astronauts chowed down on lettuce grown in a NASA-built space greenhouse, ten years after the Russians did it with the American-built and still working LADA greenhouse.

Almost all the stories below, however, fail to note that earlier effort, and instead make the false claim that this NASA experiment is the first to grow lettuce in space.

Only the last article, written at an alternative space news website normally focused on the collection of space memorabilia, gets it right, noting that the Russians did it more than a decade ago and have since then been regularly growing lettuce, peas, and radishes on ISS — and eating them. (They also link to the 2003 Air & Space article I wrote on this very subject.)

Meanwhile, take a scan of all the important mainstream news outlets above, none of whom did the slightest bit of research or fact-checking so they could find out that NASA’s experiment now is not the first, and in fact is more than a decade behind an earlier co-operative effort between the Russians and Utah State University.

This should make you wonder if maybe their other news research is as sloppy.

Update on Boeing’s CST-100

This article provides an update on the status of the construction of Boeing’s CST-100 manned capsule.

It also describes NASA’s lobbying effort with Congress to get the full budget it had proposed for the construction of the commercial crew spacecraft.

I note instead the apparent bureaucratic focus of all the work Boeing seems to be doing.

Following the CBR [Certification Baseline Review], Boeing successfully completed the Ground Segment CDR (Critical Design Review) on 4 December 2014 before moving onto the Phase 2 Safety Review (Part B) in early January 2015. By mid-March, Boeing completed the Phase 2 Safety Review (Safety Technical Review Board Readiness) and moved on to the Delta Integrated CDR, which took place on 27 March 2015.

Since then, Boeing has spent the summer months conducting the Phase 2 Safety review (STRB 80%) as well as producing the CDR for the launch elements of the program and the Qualification Test Article Production Readiness Review.

Moreover, in late July, teams at the Kennedy Space Center began building the Structural Test Article (STA) for the CST-100 capsule inside former Orbiter Processing Facility bay 3 (OPF-3).

Lots of reviews, but notice in the last paragraph they have only begun building the first capsule. As much as these reviews might help them make sure they are doing things right, they seem to create a situation where the company is able to slow-walk construction to help NASA with its congressional lobbying effort, while simultaneously making it sound like they are accomplishing a lot.

Sudden outburst activity on Comet 67P/C-G

jet on Comet 67P/C-G

Cool image time! As Comet 67P/C-G approaches perihelion, Rosetta is detecting and imaging more and more activity coming from the nucleus, including a power outburst lasting less than a half hour.

In the approach to perihelion over the past few weeks, Rosetta has been witnessing growing activity from Comet 67P/Churyumov–Gerasimenko, with one dramatic outburst event proving so powerful that it even pushed away the incoming solar wind.

The comet reaches perihelion on Thursday, the moment in its 6.5-year orbit when it is closest to the Sun. In recent months, the increasing solar energy has been warming the comet’s frozen ices, turning them to gas, which pours out into space, dragging dust along with it.

The three pictures above were taken 18 minutes apart. The first shows nothing, and in the last the jet has almost completed dissipated. In the middle image, however, the jet is well defined, and data from the spacecraft indicated that it was so strong that it “had pushed away the solar wind magnetic field from around the nucleus.”

The mobile launch building at Vostochny

At their new spaceport at Vostochny, the Russians are building a moveable launch building that will enclose their Soyuz rockets prior to launch.

Painted in elegant blue and white and standing almost 50 meters high, the Mobile Service Tower, MBO (for Mobilnaya Bashnya Obsluzhivaniya), is designed to provide personnel access to the Soyuz rocket during the countdown to liftoff from its launch pad in Vostochny. The structure can be also used to service the pad after launch and to process the rocket in case of an aborted liftoff.

With the tower in place, technicians can easily reach practically any part of the rocket as high as 37 meters above the surface of the launch pad. Internal access bridges of the tower surround the upper portion of the first and second stage, the third stage and the payload fairing.

The article also notes that “for decades, Soviet soldiers and officers and later their Russian civilian successors had to brave winter cold and summer heat preparing Soyuz rockets for launch on open-air gantries in Baikonur and Plesetsk. But in a sign how times have changed, the new generation of rocketeers will be protected from snow and rain with a climate-controlled tower completely enclosing the Soyuz rocket before liftoff from its newest launch pad at Russia’s Vostochny Cosmodrome.”

The irony here is profound. Big moveable buildings is how NASA has been doing it since Apollo. It is also what Boeing’s Delta family of rockets uses at Vandenberg in California. It is also why the Saturn 5 was and the Delta is so expensive to launch.

SpaceX abandoned such complicated structures in designing its Falcon 9, and instead decided to copy the old Soviet method of simple buildings for horizontal assembly and the simple horizontal transport to the launchpad. This appears to save a lot of money while simplifying rocket assembly.

That the Russians are now copying NASA’s more expensive but fancy mobile building approach means that, once again, their government is making decisions not based on efficiency but the prestige their political decisions can give them. From a competitive perspective, this is not going to benefit the Russia space effort, in the slightest.

But their workers will be more comfortable while they assembly those rockets!

Scientists narrow the next Mars rover candidate landing sites to 8

Jezero Crater

For the next Mars rover, scheduled to launch in 2020, scientists have now narrowed their candidate landing sites to eight, with Jezero Crater (pictured on the right) the favorite choice.

The top vote getter was Jezero crater, which contains a relic river delta that could have concentrated and preserved organic molecules. “The appeal is twofold,” says Bethany Ehlmann, a planetary scientist at the California Institute of Technology (Caltech) in Pasadena. “Not only is there a delta, but the rocks upstream are varied and diverse.”

The image clearly shows the scientific attraction of Jezero Crater, with an obvious meandering river canyon opening out into an obvious river delta. The crater in the delta will also give them an opportunity to do some dating research, since that crater had to have been put there after the delta was formed.

The choice however illustrates the difference in goals between scientists and future colonists. Scientists are looking for the most interesting locations for understanding the geological history of Mars. Future colonists want to find the best places to establish a home. Jezero Crater, as well as the other eight candidate sites, do not necessarily fit that settlement need. For a colonist it might be better to put a rover down on the flanks of Arsia Mons, one of Mars’ giant craters where scientists have evidence of both water-ice and caves. None of the candidate sites, however, are aimed anywhere close to this volcanic region, because scientifically it is not as interesting.

This is not to say that the candidate sites might not be good settlement sites. It is only to note that the focus of these scientists is research only. Furthermore, it is probably premature anyway to look for settlement sites. We need to know more about Mars itself.

Footage of the Red Baron from 9/17/17

An evening pause: No music this time, only some history. Hat tip Tim Biggar, who notes “Couple of interesting things: The Fokker used a 9 cyl radial (clearly seen when they prime the cyls before takeoff). Unlike most modern designs, the crankshaft was bolted to the frame and did not rotate. The prop was bolted to the engine case and the entire engine case rotated. Lots of gyroscopic force made it hard to maneuver.

“The ‘flight suit’ and the gauntlets are worth noting.

“I think that may be Goering on the left (plain uniform with Iron Cross) at the 3:05 mark.

“At the end we see a Sopwith he shot down and the Brit pilot who lived.”

I note the sense of comradarie between these pilots at the end. In World War I there still was a sense of behaving civilly (as in civilization) even during war.

1 322 323 324 325 326 456