Tag Archives: Moon

Moon hit by small meteorite during eclipse

During the lunar eclipse two days ago on January 20, 2018 amateur astronomers were able to record the impact of a small meteorite.

The MIDAS survey is a Moon-watching that scours video of its surface in the hopes of detecting the tiny flashes associated with meteorite impacts. In this case, MIDAS scored a home run, and it was the first time the system was able to spot an impact during a total lunar eclipse.

“In total I spent almost two days without sleeping, including the monitoring time during the eclipse,” [Jose] Madiedo explained to Gizmodo. “I was exhausted when the eclipse ended—but when the automatic detection software notified me of a bright flash, I jumped out of my chair. It was a very exciting moment because I knew such a thing had never been recorded before.”

The meteorite itself wasn’t terribly large, and is estimated to have only been around 22 pounds.

I have embedded the video of the impact below the fold. It is very short, and the flash is not very impressive, but it still is quite cool.
» Read more

Share

Planetary rover update: January 22, 2019

Summary: Curiosity begins journey off of Vera Rubin Ridge. Opportunity’s silence is now more than seven months long, with new dust storms arriving. Yutu-2 begins roving the Moon’s far side.

Before providing today’s update, I have decided to provide links to all the updates that have taken place since I provided a full list in my February 8, 2018 update. As I noted then, this allows my new readers to catch up and have a better understanding of where each rover is, where each is heading, and what fascinating things they have seen in the past few years.

These updates began when I decided to figure out the overall context of Curiosity’s travels, which resulted in my March 2016 post, Pinpointing Curiosity’s location in Gale Crater. Then, when Curiosity started to travel through the fascinating and rough Murray Buttes terrain in the summer of 2016, I stated to post regular updates. To understand the press releases from NASA on the rover’s discoveries it is really necessary to understand the larger picture, which is what these updates provide. Soon, I added Opportunity to the updates, with the larger context of its recent travels along the rim of Endeavour Crater explained in my May 15, 2017 rover update.

Now an update of what has happened since November!
» Read more

Share

Update on Chang’e-4 plant experiments

Link here. It appears the plant experiment has now run its course, designed as it was to end before the arrival of the first lunar night.

The experiment’s chief designer, Xie Gengxin of Chongqing University, told Xinhua that life inside the canister would not survive the lander’s first lunar night, which started on Sunday. The moon’s nighttime period lasts for about two Earth weeks.

It also appears that though the plant experiment included potato, cotton, and oilseed rape, only the cotton seeds spouted. China has only released a limited amount of information about this research, so to get further details we will likely have to wait for the published papers.

Share

Seeds sprout on Chang’e-4

The new colonial movement: The cotten seeds in a plant experiment on Chang’e-4 have now sprouted, becoming the first biological life to grow on the Moon.

On Tuesday, Chinese state media said the cotton seeds had now grown buds. The ruling Communist Party’s official mouthpiece the People’s Daily tweeted an image of the sprouted seed, saying it marked “the completion of humankind’s first biological experiment on the Moon”.

Fred Watson, Australian Astronomical Observatory’s astronomer-at-large, told the BBC the development was “good news”. “It suggests that there might not be insurmountable problems for astronauts in future trying to grow their own crops on the moon in a controlled environment. …I think there’s certainly a great deal of interest in using the Moon as staging post, particularly for flights to Mars, because it’s relatively near the Earth,” Mr Watson said.

Prof Xie Gengxin, the experiment’s chief designer, was quoted as saying in the South China Morning Post: “We have given consideration to future survival in space. Learning about these plants’ growth in a low-gravity environment would allow us to lay the foundation for our future establishment of space base.” He said cotton could eventually be used for clothing while the potatoes could be a food source for astronauts and the rapeseed for oil.

This experiment is actually a very big deal, as it is the first biological experiment, ever, to take place in a low gravity environment. All previous plant experiments in space have taken place in zero gravity, and thus failed to tell us anything about growth in a partial Earth gravity environment.

That the seeds have sprouted only tells us that they can. What we don’t know yet is if the low lunar gravity distorts their growth.

Share

LRO pinpoints Chang’e-4 landing site

LRO pinpointing Chang'e-4's location on Moon

By referencing the footage released by China of Chang’e-4’s descent onto the Moon, the Lunar Reconnaissance Orbiter (LRO) team has been able to pinpoint exactly where the lander touched down. The image on the right has been reduced slightly. Click on it to see it in full resolution.

The largest nearby crater to the lander is estimated to be about 80 feet across.

Because the images were in December 2018 before the lander’s arrival, they do not show it. However, the LRO team now knows exactly where to look when they take new pictures in the next few weeks. Moreover, this will allow them to monitor Yutu-2’s travels as it roves the surface over the coming months.

Share

Chandrayaan-2 launch now scheduled for mid-April

The new colonial movement: India’s Chandrayaan-2 lander/rover mission to the south pole region of the Moon has now been re-scheduled for mid-April.

The launch date had to be pushed from the initially scheduled January-February window, as a few related tests could not be completed by the Indian Space Research Organisation (Isro). Isro chairman K Sivan told the media on Friday that the next available slot is during March-April, and the launch could take place by mid-April. However, if this window is passed, the prestigious mission will have to be pushed again to June.

The article also suggests that they have made some changes to the mission’s flight plan.

Share

Want to see a panorama of Chang’e-4 landing site? You can!

If you want a really good look at the Chang’e-4 landing site on the far side of the Moon — with Yutu-2 about thirty feet away — photographer Andrew Bodrov has produced a spectacular 360 degree panorama from images sent down by the lander.

This panorama reveals two things. First, the lander landed close to two small craters, which it thankfully missed. Second, there are some hills in the distance which I suspect are central peaks of Von Kármán crater. They are probably beyond Yutu-2’s range, but would make a worthwhile exploratory target.

Meanwhile, the rover and lander have come back to life after a brief hibernation to protect them from the heat of the lunar mid-day.

Finally, China has released a video showing Chang’e-4’s descent and landing, which I have embedded below the fold. In it, you can see the spacecraft computer maneuver to land between those two craters shown in the panorama.
» Read more

Share

Using LRO to find Chang’e-4

LRO image of Chang'e-4 landing area

The Lunar Reconnaissance Orbiter (LRO) science team has released a high resolution image from 2010 pinpointing the area on the floor of Von Kármán crater where Chang’e-4 landed. On the right is a reduced and partly annotated version.

They have not actually found the lander/rover, since this image was taken long ago before Chang’e-4 arrived. However, this image, combined with the Chang’e-4 landing approach image, tells us where the lander approximately landed. It also pinpoints where to look for it when LRO is next able to image this region, around the end of January.

By then, Yutu-2 will hopefully have traveled some distance from Chang’e-4, and LRO will be able to spot both on the surface.

Share

Yutu-2 has rolled out and has begun roving

The new colonial movement: China’s second lunar rover, Yutu-2, has rolled off of the Chang’e-4 lander and begun its roving.

Yutu will rove within Von Kármán craterand analyse the variations of composition of the lunar surface the Visible and Near-Infrared Imaging Spectrometer (VNIS), while also returning unprecedented images with a panchromatic camera.

The rover’s two offer science payloads, the Lunar Penetrating Radar (LPR) and Advanced Small Analyser for Neutrals (ASAN), the latter developed by the Swedish Institute of Space Physics in Kiruna, will provide insight into the lunar subsurface to a potential depths of hundreds of metres and the space environment and interactions with the surface respectively.

Share

India delays launch of Chandrayaan-2

India announced today that it is delaying the January 3, 2019 launch of its second lunar mission, the lander/rover Chandrayaan-2.

They have not announced a new launch date. Nor did they explain the cause of the delay. My suspicion is that K. Sivan, the head of their space agency ISRO, was not happy about some engineering issue, and demanded a review.

Unlike most such administrators, Sivan is an actual engineer who helped design and build India’s two rockets, the PSLV and GSLV. Last year, after the failure of one Indian satellite already in orbit, he recalled another Indian satellite from French Guiana only weeks before launch, had it brought back to India for a careful inspection to make sure it did not have the same problem. The move saved the satellite.

Share

Chang’e-4 successfully lands on far side of Moon

The new colonial movement: China’s Chang’e-4 lander/rover has successfully landed on far side of Moon.

Early reports of a successful landing sparked confusion after state-run media China Daily and CGTN deleted tweets celebrating the mission. China Daily’s tweet said: ‘“China’s Chang’e 4 landed on the moon’s far side, inaugurating a new chapter in mankind’s lunar exploration history.”

Official confirmation of the landing came two hours later via state broadcaster CCTV, which said the lunar explorer had touched down at 10.26am (2.26am GMT). The Communist party-owned Global Times also said the probe had “successfully made the first-ever soft landing” on the far side of the moon.

No reason has been given for the deletion of the tweets, though I suspect they did so because they were simply premature.

Update: More information here, including images.

Share

Engineers adjust Chang’e-4’s orbit

The new colonial movement: Engineers have adjusted Chang’e-4’s lunar orbit in preparation for landing.on the Moon’s far side.

The probe has entered an elliptical lunar orbit, with the perilune at about 15 km and the apolune at about 100 km, at 8:55 a.m. Beijing Time, said CNSA.

Since the Chang’e-4 entered the lunar orbit on Dec. 12, the ground control center in Beijing has trimmed the probe’s orbit twice and tested the communication link between the probe and the relay satellite Queqiao, or Magpie Bridge, which is operating in the halo orbit around the second Lagrangian (L2) point of the earth-moon system.

The space engineers also checked the imaging instruments and ranging detectors on the probe to prepare for the landing.

They need to time the landing so that it comes down in the Moon’s early morning. This will not only provide better visuals, with shadows to see surface details, but more importantly will give them 14 Earth days before sunset to get settled on the surface and initiate rover operations.

Share

Chang’e-4 establishes link with Queqiao relay satellite

The new colonial movement: Chang’e-4 has successfully established a communications link with its Queqiao relay satellite.

This success puts China one step closer to its January attempt to soft land Chang’e-4’s lander on the far side of the Moon. Once on the surface, Chang’e-4 must be able to communicate with Queqiao in order to relay data to Earth.

Share

A detailed look at Chang’e-4

Link here. Lots of nice information, including the fact that Chang’e-3 seems to still be functioning in a limited manner, and that Chang’e-4 is depending not on solar panels but a radioactive thermal electric system, similar I think to the RPGs that NASA uses on its deep space missions. (I am uncertain however about this, based on looking at the video at the link, which seems to show solar panels on Chang’e-4. They could be instead panels to protect the spacecraft from the sun’s heat.)

They enter lunar orbit on December 12, and will likely land in the first week of January.

Share

China launches lunar rover/lander Chang’e-4; Saudi satellites

Using its Long March 3B rocket, China on December 7 successfully launched its Chang’e-4 rover/lander, aimed at being the first probe to land on the Moon’s far side.

It will take the probe five days to reach the Moon and land.

The same day China also launched two Earth observation satellites for Saudi Arabia, using its Long March 2D rocket.

The leaders in the 2018 launch standings:

35 China
20 SpaceX
13 Russia
10 Europe (Arianespace)

China has widened its lead over the U.S. 35 to 32 in the national rankings. China also looks like it is going to come close to meeting its prediction of 40 launches for 2018.

Share

NASA commits $2.6 billion for commercial lunar exploration

NASA today announced that it has committed $2.6 billion over the next ten years to buy delivery services to the Moon for its unmanned scientific missions, provided from nine different private companies.

The companies selected — Astrobotic Technology, Deep Space Systems, Draper, Firefly Aerospace, Intuitive Machines, Lockheed Martin Space, Masten Space Systems, Moon Express, Orbit Beyond — cover a range of companies from the well established to new companies not yet proven. This announcement essentially permits them all to bid on providing NASA delivery services to the moon for small unmanned probes. The press release states that:

These companies will be able to bid on delivering science and technology payloads for NASA, including payload integration and operations, launching from Earth and landing on the surface of the Moon. NASA expects to be one of many customers that will use these commercial landing services.

More information here. UPDATE: Doug Messier has published the press releases from most of the above companies, describing their individual projects, and I have added links to each.

The program appears modeled after NASA commercial cargo and crew programs, whereby the companies will own and control the orbiters, landers, and rovers they build, allowing them to market them to others for profit. It also appears designed to keep costs low, as did commercial cargo program. NASA is merely the customer.

This is good news. It suggests that the American space industry is continuing to transition away from big government programs, controlling everything, to a robust private industry that is in charge with the government merely one out of many customers.

Share

A cubesat communications satellite for the Moon

Capitalism in space: The smallsat company Surrey Satellite Technology is designing a cubesat communications satellite set for launch in 2021 designed to test technology for providing communications in lunar space.

Surrey Satellite Technology Ltd (SSTL) has today announced that it is designing a low cost 35kg lunar communications satellite mission called DoT-4, targeted for a 2021 launch. DoT-4 will provide the communications relay back to Earth using the Goonhilly Deep Space Network, and will link up with a rover on the surface of the Moon. SSTL is currently in discussions with a number of parties for the lunar mission, and expects to disclose further information on mission partners and funding early in 2019.

Sarah Parker, Managing Director of SSTL, said “SSTL has led the way in pioneering the use of small satellites for over 30 years and we are now raising our sights to change the economics of space around the Moon, and beyond.”

DoT-4 will be the pre-cursor mission for a larger lunar communications satellite to follow in the 2023 timeframe which will carry a more robust payload and which will also have the potential for navigation services. SSTL’s ultimate aim is to launch a full constellation of lunar communications satellites offering full service capability to enable new and regular opportunities for science and exploration and economic development of the space environment beyond Earth’s orbit.

It appears that Surrey is trying to grab the market for providing communications services for both NASA’s Gateway project as well as the number of private small lunar rovers that are expected to launch in the coming years.

I should add that this project probably only exists because Surrey and its investors know that it will have affordable access to space, using the new smallsat rockets coming from Rocket Lab, Vector, and Virgin Orbital.

Share

India wants international instruments for its Venus mission

The new colonial movement: India has requested science instruments proposals from the international community for its planned Venus orbiter, set to launch in 2023.

ISRO has already selected 12 instruments, proposed by Indian scientists, including cameras and chemical analyzers to study the atmosphere. Now, it’s hoping other scientists will join. “Planetary exploration should be all about global partnerships,” says Kailasavadivoo Sivan, a rocket scientist and ISRO’s chair. (The deadline for submitting proposals is 20 December.)

For me, the big news with this article is that it is the very first I have seen that actually spells out Sivan’s first name. Since he became head of ISRO in January 2018, he has only been listed as “K. Sivan” in every single article, even those describing his background when he was appointed. Now that I have learned what a tongue-twister that first name is, I can understand why they abbreviate it.

On a more serious note, this article indicates the growing maturity of India’s space effort. They not only are planning a mission to Venus, they will fly missions to the Moon in January and Mars in 2022, and intend to launch their first manned mission in that same time period.

Share

A young lunar impact crater

Lunar crater

Cool image time! The science team from Lunar Reconnaissance Orbiter (LRO) today released a new image, taken on November 3, 2018, of a relatively young small crater not easily seen from Earth.

The unnamed crater, just 1.8 kilometers across, is too small to see from Earth with unaided eyes. It is in the Moon’s wild west, just past Oceanus Procellarum and close to the line dividing the nearside from the farside, so it would be hard to glimpse in any case. If you stood on the crater rim, you would see the Earth forever slowly bobbing up, down, and sideways close to the eastern horizon.

The image above is a cropped and reduced-in-resolution section of the released image. If you click on it you can see this section at full resolution.

What I find fascinating about this crater are the black streaks that appear to only run down the outside slopes of the eastern rim, but nowhere else. At first glance it looks like prevailing winds, blowing from the west, caused this, but of course that’s wrong because the Moon has no atmosphere. The website explains:
» Read more

Share

NASA to hire private lunar probes for future missions

Capitalism in space: Rather than build its own future lunar landers and rovers, NASA is now planning to hire these services from private companies, with missions flying as soon as 2021.

Under a program called Commercial Lunar Payload Services (CLPS), NASA would buy space aboard a couple of launches a year, starting in 2021. The effort is similar to an agency program that paid private space companies such as Elon Musk’s SpaceX to deliver cargo to the International Space Station (ISS). “This a new way of doing business,” says Sarah Noble, a planetary scientist at NASA headquarters in Washington, D.C., who is leading the science side of NASA’s lunar plans.

Scientists are lining up for a ride. “It really feels like the future of lunar exploration,” says Erica Jawin, a planetary scientist at the Smithsonian Institution’s National Museum of Natural History in Washington, D.C. She and other attendees at the annual meeting of the Lunar Exploration Analysis Group in Columbia, Maryland, last week were eager to show NASA why their small experiments would be worthy hitchhikers on the landers.

Several companies, including Astrobotic, Moon Express, and iSpace, are vying to establish a commercial moon market. Buying rides to the moon from launch providers like Rocket Lab, each firm hopes to become the go-to carrier for other companies seeking to prospect the moon for rocket fuel ingredients, or to gather rocks to sell for study. But a contract with NASA is the real prize. Moon Express, for example, has designed the MX-1, a lander roughly the size and shape of Star Wars’s R2-D2. But, “We won’t pull the trigger until we know we have a CLPS award,” says Moon Express CEO Robert Richards in Cape Canaveral, Florida.

The companies selected for CLPS must deliver at least 10 kilograms of payload by the end of 2021, NASA says. It is scrambling to find instruments that are ready to fly. “What do you have sitting on shelf now that you can throw onto the mission immediately?” Noble says. “We’re looking for flight spares, engineering models, student-built projects. It’s a little bit of a weird call for us.” The agency is planning to pay up to $36 million to adapt eight to 12 existing scientific instruments to the initial small landers; by the middle of next decade it aims to build a pipeline of instruments for bigger landers that might also carry rovers.

These are going to small missions with limited lifespans and limited abilities. They will however be cheap, fast, and many. In the end I am certain NASA (and the taxpayer) will get far more bang for the buck.

Share

The fractured floor of Komarov Crater

Fractured floor of Komarov Crater

Cool image time! The Lunar Reconnaissance Orbiter (LRO) oblique image on the right, reduced significantly from the original to post here, shows the deeply fractured floor of Komarov Crater on the Moon’s far side. As noted at the image link,

The spectacular fractures that cut across the floor of Komarov crater [about 85 kilometers or 50 miles diameter] were formed when magma rose from the mantle, uplifting and fracturing the crater in the process. In this case the magma did not erupt to the surface, thus the fractures remain visible.

The Komarov fractures are quite large, the major left-to-right fracture that cuts across the center of the scene is over 500 meters deep [1,600 feet] and 2500 meters wide [1.5 miles]. When did they form? The large number of craters superimposed on the floor and fractures testifies to their ancient ages. Likely they are of the same vintage (>2.6 billion years) as the Mare Moscoviense lava plains just to the north

An overview of Komarov Crater as well as other LRO images of it can be found here.

The question that comes to my mind is the relative rarity of craters with such large fractures on their floors. I have noted this for Mars as well. It is expected that there is melt on the floor of all large impact craters. Why do a few produce such pronounced fractures, while most do not? This website posits one explanation, but its complexity leaves me unsatisfied. It also doesn’t explain why it happens only rarely.

Share

Another private lunar rover unveiled

Capitalism in space: The private start-up company Lunar Outpost today unveiled its tiny 10 kilogram (22 pound) rover, designed to map lunar resources.

The first Prospector was demonstrated driving and drilling in Lunar regolith simulant at the Colorado School of Mines’ new Lunar testbed facility in the Earth Mechanics Institute overseen by the Center for Space Resources. This event marks the first commercial Lunar Prospector publicly tested in the United States.

Evidence of valuable resources on the Lunar surface, such as water, precious metals, and helium-3 have been established by remote sensing on flyby missions around the Moon. This scientific data has been used to create general resource models of the Lunar surface, which now require ground-truthing to establish optimal landing sites and plan future resource extraction operations. Groups of Lunar Outpost Prospectors will map the surface and subsurface resources of the Moon, while autonomously navigating along waypoints and avoiding hazards such as large rocks and craters. These Prospectors can also be teleoperated if needed and can utilize NASA’s Lunar Orbital Platform-Gateway concept as a center of operations.

This is a tiny inexpensive rover, essentially an upgraded drone. Very smart, and efficent. Below the fold is the company’s video of this demo test. The drilling capability is especially impressive.

Their website does not say how much they will charge for this rover, but they also note that it has 5 kilograms of cargo capacity, meaning that they can also offer this to customers.
» Read more

Share

India completes test landing for its Chandrayaan-2 lunar lander

The new colonial movement: Using a scaled-down prototype to compensate for the Earth’s heavier gravity, India’s space agency ISRO has successfully completed a soft landing test of Chandrayaan-2’s lunar lander, dubbed Vikram.

Chandrayaan-2 is scheduled for a January launch, and besides the orbiter and Vikram lander, it will also carry a rover.

Share

An update on China’s Chang’e-4 lunar lander

Link here. Chang’e-4 is set to land on the far side of the Moon, sometime in December. The article provides some additional details, including information about the likely landing site in Von Kármán crater. It also notes that there are three launches planned at the spaceport prior to the December launch, and that any issue on any of those launches could delay Chang’e-4’s lift-off. .

Share

The central peaks of Copernicus crater

Central peaks of Copernicus Crater

Cool image time! Lunar Reconnaissance Orbiter science team has released a new image of the central peaks of Copernicus Crater, shown on the right cropped and reduced in resolution.

Copernicus (9.62°N, 339.92°E), which is easily seen with a moderately powerful backyard telescope, is one of the best-known craters on the Moon. Despite its age (around 860 million years), it is well preserved with over 4000 meters of relief from floor to rim, and the tallest of its central peaks rises approximately 1300 meters above the crater floor. This image, centered on the central peaks, was captured just after dawn (86° incidence angle) as the Lunar Reconnaissance Orbiter slewed west to a 67°angle.

The image is similar to one taken back in 2012, but has a higher resolution because it was shot from 50 miles elevation instead of 75.

This crater was also the subject of one of the first breath-taking images ever taken of the Moon from lunar orbit, by Lunar Orbiter in November 1966.

The wider view taken by LRO gives some context for the image above. The peaks shown in closeup here are part of the lower right grouping. If you go to the first link above you can zoom in and explore all parts of the full image, and see some quite amazing details, including the large boulders scatter throughout the hollows between the peaks.

Copernicus Crater

Share

NASA signs agreement to work with SpaceIL’s privately built lunar rover

Capitalism in space: NASA, the Israeli space agency, and the private Israeli space company SpaceIL have signed a cooperative agreement to work together when SpaceIL’s privately built lunar rover is launched to the Moon in December.

NASA will contribute a laser retroreflector array to aid with ground tracking and Deep Space Network support to aid in mission communication. ISA and SpaceIL will share data with NASA from the SpaceIL lunar magnetometer installed aboard the spacecraft. The instrument, which was developed in collaboration with the Weizmann Institute of Science, will measure the magnetic field on and above the landing site. The data will be made publicly available through NASA’s Planetary Data System. In addition, NASA’s Lunar Reconnaissance Orbiter will attempt to take scientific measurements of the SpaceIL lander as it lands on the Moon.

This agreement is the first step in the transition from having the government build planetary probes to it becoming a customer, buying these probes from private companies that build them for profit.

Share

Celebrate Earthrise Day!

In only a little less than three months we will be celebrating the fiftieth anniversary of the December 1968 flight of Apollo 8 — first manned mission to another world. During that mission three humans spent 20 hours in orbit around the Moon, during which they read the first twelve verses of the Old Testament on Christmas Eve and became the first humans to witness an Earthrise and to photograph it.

To celebrate that achievement, a new website has been created, dubbed Celebrate Earthrise Day.

The website provides some great background material. You can listen to the astronaut’s Christmas telecast as well as see a recreation of the moment when the astronauts saw that Earthrise and Bill Anders took his famous color photo. The site also includes many photos from before, during, and after the mission, with many pictures coming from the personal family pictures of the astronauts. There is also audio of an 1988 Bill Anders’ interview, as well as a video of a fascinating presentation made by Bill and Valerie Anders, describing their life journey leading up to Apollo 8 and afterward.

Finally, and I think of most interest to my readers here, the site includes the audio of my introduction from the new audio edition of my book, Genesis: the Story of Apollo 8.

The site also includes the audio of one of the best radio interviews I have ever done, broadcast in 1998, on the subject of Apollo 8, our American culture, and the importance of each person choosing their path in life wisely. You can find that audio at the bottom of this webpage.

Check it all out. I think you will find it worth your while.

Share
1 2 3 13