A different kind of chaos on Mars
Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 23, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I had originally chosen to feature a different picture of this spot, taken on August 1, 2024 in order to create a stereo pair, but this week the camera team featured this first photo, providing a caption.
This disrupted surface is characterized by a collection of rounded to flat-topped mounds of various sizes connected by narrow flat floors, typical of the aptly named “chaotic terrain” on Mars.
What could have caused this flat surface to break into pieces? You might imagine that a flat surface could be broken up if it was inflated or collapsed. One hypothesis is that large amounts of water were released from deep below the ground to cause the surface break up.
Normally on Mars, especially in the mid-latitudes, chaotic terrain is associated with glacial activity, suggesting that glaciers over time erode valleys along random criss-crossing fault lines to create the mesas and canyons. This patch of chaotic terrain however suggests a different formation process.
» Read more
Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on June 23, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). I had originally chosen to feature a different picture of this spot, taken on August 1, 2024 in order to create a stereo pair, but this week the camera team featured this first photo, providing a caption.
This disrupted surface is characterized by a collection of rounded to flat-topped mounds of various sizes connected by narrow flat floors, typical of the aptly named “chaotic terrain” on Mars.
What could have caused this flat surface to break into pieces? You might imagine that a flat surface could be broken up if it was inflated or collapsed. One hypothesis is that large amounts of water were released from deep below the ground to cause the surface break up.
Normally on Mars, especially in the mid-latitudes, chaotic terrain is associated with glacial activity, suggesting that glaciers over time erode valleys along random criss-crossing fault lines to create the mesas and canyons. This patch of chaotic terrain however suggests a different formation process.
» Read more