Earth-sized exoplanet discovered orbiting dwarf star 55 light years away

Using a number of ground-based telescopes worldwide, astronomers have discovered an Earth-sized exoplanet orbiting what the scientists label an “ultra-cool” dwarf star only about 55 light years away.

You can read the paper here.

Though Earth-sized, this exoplanet is not habitable. It orbits the star every 17 hours and is believed to be tidally locked, with one side always facing the star. More important, though this red dwarf star has likely existed for many tens of billions of years and will continue for many tens of billions of years into the future, the star is too dim and lacking in the kind of resources needed for life. It also drenches the planet with bursts of radiation, which is also believed to have stripped the planet of an atmosphere.

Potentially serious problem on BepiColombo Mercury mission

According to the European Space Agency (ESA), engineers have discovered what could be a potentially serious problem on BepiColombo mission that is presently on its way to Mercury.

The solar arrays and electric propulsion system on the Mercury Transfer Module are used to generate thrust during the spacecraft’s complex journey from Earth to Mercury.

However, on 26 April, as BepiColombo was scheduled to begin its next manoeuvre, the Transfer Module failed to deliver enough electrical power to the spacecraft’s thrusters.

A combined team from ESA and the mission’s industrial partners set to work the moment the issue was identified. By 7 May, they had restored BepiColombo’s thrust to approximately 90% of its previous level. However, the Transfer Module’s available power is still lower than it should be, and so full thrust cannot yet be restored.

The press release implies that this issue won’t prevent the spacecraft from entering orbit around Mercury as scheduled in December 2025, but one wonders how that could be if it doesn’t have sufficient power to do the proper course correction during its last major flyby of Mercury in September 2024. If it misses its precise route in ’24 it could miss Mercury entirely in ’25.

Engineers are analyzing the situation to see what can be done to get it to Mercury, while also trying to figure out what caused this power problem in the first place in order to fix it.

Juno looks down at Jupiter

Jupiter as seen by Juno on May 12, 2024
Click for original image.

Cool image time! The picture to the right, rotated, reduced, and annotated to post here, was taken on May 12, 2024 by the camera on the Jupiter orbiter Juno during its most recent close-fly of the gas giant, its sixty-first since it arrived in 2016. The picture was snapped when Juno was about 34,674 miles away from Jupiter as it flew over the northern hemisphere.

Citizen scientist Thomas Thomopoulos then took that raw image and enhanced and enlarged it to bring out the storm details. You can see the distinct bands that cut across Jupiter’s equatorial and mid-latitudes. The reddish band is where the Great Red Spot is located, though that spot is not seen in this picture.

As we move north those bands slowly transition into the chaotic storms of the polar regions, which also circle the pole but do not form bands.

For scale I have added a circle that approximates the Earth’s size in comparison to Jupiter. You will notice that some of those polar storms are as big if not bigger than the Earth itself. To think we presently have any real understanding of the processes that create Jupiter’s climate and weather systems is to be arrogant beyond belief.

Fortunately, the scientists who study Jupiter are not that arrogant, though they often can’t admit it and are forced to sound otherwise when ignorant journalists and NASA managers demand more answers from them then are possible. The scientists understand that what makes pictures like this intriguing is not what it tells us but the amount of ignorance it reveals. To get funding for future research however sometimes requires they sound more knowledgeable than they are.

The aurora as seen looking down from space

The aurora over the U.S. on May 11, 2024
Click for original image.

NOAA on May 13, 2024 released a set of eight images taken by its fleet of JPSS weather satellites, showing the strong Aurora Borealis or Northern Lights that were activated over the May 11th weekend due to several very strong solar flares on the Sun and sent a geomagnetic storm at the Earth.

One of those images, reduced to post here, is to the right. You can see the eastern coast of the United States, outlined by city lights, with a band of aurora cutting across the northern half and reaching south below the Great Lakes. The other seven images are available at the link above.

The geomagnetic storm was the strongest produced by the Sun in more than two decades, since 2003. That storm occurred during solar maximum, as did the May 11th this past weekend. However, the Sun experienced another solar maximum in-between, in 2014, which produced few such storms, and none as strong.

I want to add that despite the screams of panic prior to the arrival of this storm, its arrival produced only minor disturbances in the world’s electrical grid, and in fact was proof positive that the many decades of work that electrical companies have devoted to protecting the grid from such storms has paid off. It is very unlikely any major storm from the Sun can harm that grid in the future, unless of course we get lazy and stop maintaining it.

Curiosity looks forward and back

Panorama looking north
Click for original image.

Overview map
Click for interactive map

The images above and below are small sections from 360 degree panorama created on May 13, 2024 from 31 photos taken by the right navigation camera on the Mars rover Curiosity.

The overview map to the right provides the context. The red dotted line indicates Curiosity’s planned route, while the white dotted line its actual route. The rover’s present position is marked by the blue dot. The yellow lines indicate the area covered by the picture above, while the green lines indicate the area covered by the picture below.

The image above looks north, back down Gediz Vallis and across to the north rim of Gale Crater, about 20-25 miles away. The red dotted line marks the rover’s path to get up to this point. All told, Curiosity has climbed about 2,500 feet in elevation since it left the floor of Gale Crater about nine years ago.

The image below looks south, up Gediz Vallis and towards the peak of Mount Sharp (not visible), about 26 miles away and about 16,000 feet higher up. Curiosity might move forward about 500 feet to the small hill on the left (indicated by the red dot), or it might turn west from this point, as indicated by the red dotted line on the overview map.

Panorama looking south
Click for original image.

A planet with the density of cotton candy?

The uncertainty of science: According to data obtained from ground-based telescopes of a newly discovered transiting exoplanet, that planet has the density of cotton candy.

This new planet, located 1,200 light-years from Earth, is 50% larger than Jupiter but seven times less massive, giving it an extremely low density comparable to that of cotton candy. “WASP-193b is the second least dense planet discovered to date, after Kepler-51d, which is much smaller,” explains Khalid Barkaoui, a Postdcotral Researcher at ULiège’s EXOTIC Laboratory and first author of the article published in Nature Astronomy. Its extremely low density makes it a real anomaly among the more than five thousand exoplanets discovered to date. This extremely-low-density cannot be reproduced by standard models of irradiated gas giants, even under the unrealistic assumption of a coreless structure.”

Such a gas giant is not impossible. For example, Saturn’s density is so low that if you could find an ocean large enough it would float. The scientists theorize that this exoplanet is likly comprised mostly of hydrogen and helium.

Nonetheless, there are phenomenon here that we certainly do not understand.

XRISM X-ray space telescope functioning despite closed “aperture door”

XRISM, a joint X-ray space telescope built by NASA and Japan’s space agency JAXA, is collecting data despite the failure on one instrument of an aperture door to open.

In January, project scientists said that XRISM was working well except for an aperture door, also called a gate valve, for the Dewar on its imaging instrument, Resolve, which failed to open. The instrument can still operate with the door closed, although the door, made of beryllium, does attenuate some X-rays at lower energies.

At the time, efforts were underway to try and open the gate valve. However, speaking at a May 7 meeting of the National Academies’ Board on Physics and Astronomy, Mark Clampin, director of NASA’s astrophysics division, said those efforts were on hold for the next year and a half.

Instead, the science team decided to proceed with science operations, since the telescope has two other working instruments, and can get data even from this hindered third.

XRISM is a replacement of a previous JAXA X-ray telescope that launched in 2016 but failed immediately.

A galaxy’s net of dust

A galaxy's net of dust
Click for full image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope of the central part of galaxy NGC 4753, 60 million light years away and known as a lenticular galaxy because of its elongated elliptical shape and ill-defined spiral arms. It is believed we looking at this galaxy edge-on.

You can see a wider image of NGC 4753 here, released in January and taken by the Gemini South telescope in Chile. According to that press release, the brown dust lanes that seem to form a wavy net in the foreground are created by a process called differential precession:

Precession occurs when a rotating object’s axis of rotation changes orientation, like a spinning top that wobbles as it loses momentum. And differential means that the rate of precession varies depending on the radius. In the case of a dusty accretion disk orbiting a galactic nucleus, the rate of precession is faster toward the center and slower near the edges. This varying, wobble-like motion results from the angle at which NGC 4753 and its former dwarf companion collided and is the cause of the strongly twisted dust lanes we see wrapped around the galaxy’s luminous nucleus today.

Once again, the limitation of only observing this object from one angle makes it very difficult to untangle what it really looks like. Therefore, these conclusions carry a great deal of uncertainty.

ISRO to land its Chandayaan-4 lunar sample return mission near where Chandrayaan-3 landed


Click for interactive map. To see the original
image, go here.

India’s space agency ISRO announced on May 11, 2024 that the landing site for its Chandayaan-4 lunar sample return mission will be in the same area where its Chandrayaan-3’s Vikram lander touched down, carrying the Pragyan rover.

The map to the right shows that location, at about 69 degrees south latitude. The mission will require two launches, and will have five components, a propulsion module, a transfer module, a lander module, an ascender module and a re-entry module. The two rockets will use India’s LVM-3 and PSLV rockets.

The actual mission concept, including which modules will be launched with which rocket as well as whether they will dock in Earth or lunar orbit, has not yet been released. This most recent tweet however mentioned that the lander will only operate for one lunar day, which means it will land, grab its samples quickly, and send the ascender capsule up, all within an Earth week.

A launch timeline for the mission also remains unclear.

Significant water found in samples from China’s Chang’e-5 Moon mission

According to a new paper published in late April, scientists analyzing the samples returned from the Moon by China’s Chang’e-5 Moon mission in 2021 have found more water embedded in the topsoil than expected. From the paper’s conclusions:

[O]ur results indicate that a considerable [solar wind]-derived water is stored within at least the uppermost meter (down to 0.8 meters) of the regolith beneath the lunar surface. This type of water represents a valuable potential resource for future in situ exploration of the Moon, as it not only has higher contents than indigenous water (up to several wt.% vs. <50 ppm) but could also be extracted by heating.

We are still not talking about a lot of water, but this result suggests there is more than earlier reports from Chang’e-5’s samples. This result also could explain the hydrogen signature across much of the Moon’s surface by Chandrayaan-1.

The spiral dust streams within the Andromeda galaxy

Andromeda in infrared
Click for original image.

Cool image time! The picture above, cropped and reduced to post here, was released yesterday and uses archival infrared data from the now retired Spitzer Space telescope to highlight the dust found within the Andromeda galaxy, about two million light years away.

Spitzer’s infrared view was similar to Webb’s but at a far lower resolution. In the picture above the red indicates cool dust.

By separating these wavelengths and looking at the dust alone, astronomers can see the galaxy’s “skeleton” — places where gas has coalesced and cooled, sometimes forming dust, creating conditions for stars to form. This view of Andromeda revealed a few surprises. For instance, although it is a spiral galaxy like the Milky Way, Andromeda is dominated by a large dust ring rather than distinct arms circling its center. The images also revealed a secondary hole in one portion of the ring where a dwarf galaxy passed through.

The data also suggested that the dust is flowing at a very steady rate into Andromeda’s central black hole. According to computer simulations, this steady rate would explain why the supermassive black holes at the center of both Andromeda and the Milky Way are relative inactive. If the dust fell in clumps rather than a steady flow, both black holes would exhibit bursts of high activity, similar to active galactic centers.

A side note for anyone wishing to star-gaze: Andromeda is actually the largest visible galaxy in the night sky, about six times with width of the full Moon. If you can get to a very dark-sky location, get your eyes very dark-adapted, and you know where to look, you can actually see it with the naked eye. I did this once at a star party, helped by a bunch of amateur astronomers. The galaxy is very faint, and it helps to use binoculars to help locate it, but once identified its size in the sky truly is breath-taking.

The edge of a vast frozen lava sea on Mars

The edge of a vast frozen lava sea on Mars
Click for original image.

Cool image time! The picture to the right, rotated, cropped, reduced, and sharpened to post here, was taken on February 10, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label boringly “Lava Interactions with Landscape.”

What is the lava, and what is the landscape? Here’s is my initial guess, based simply on looking at this image alone. The mound in the middle is the landscape, the rounded top of a very ancient mountain or hill. The flat plain that surrounds it is flood lava, that in the far past poured in and mostly buried the mountain.

Everything here signals a very old terrain. To get this mountain worn so smooth from the thin Martian atmosphere has to have taken more than a billion years. And that flood lava has to also be as old, because of the number of craters on its surface. I don’t know the impact rate, but I know it takes time to accumulate this number of impacts.

The sense of age is further underlined by the moat that surrounds the hill. When that lava poured in, it would have flooded right up to the mountain slope. Over time the weakest section of lava, most prone to erosion, would be that contact point. To wear it away as we now see it must have taken many eons.

All these speculations are a very unreliable guesses. To get a better understanding of this terrain it is essential we look at more than this picture alone.
» Read more

Taffy terrain in Mars’ death valley

Taffy terrain in Mars' death valley
Click for original image.

Cool image time! The picture to the right, rotated, cropped, and enhanced to post here, was taken on December 17, 2023 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label “banded terrain and possible breached crater.”

Banded terrain is another name for a geological feature dubbed “taffy terrain” and only found on Mars, and furthermore only found there in Hellas Basin, the deepest giant impact basin on the red planet. This taffy terrain is considered very young, no than 3 billion years old, and formed from the flow of some form of viscous material, though what that material is remains unsolved.

This image however may help solve that mystery. The breached crater is just off frame to the upper right. The two-fingered flow coming down from the picture’s top is the flow coming out of the crater’s gap.
» Read more

Webb data suggests a super-Earth might have an atmosphere

Using infrared data from the Webb Space Telescope, scientists now think the hot super-Earth exoplanet dubbed 55 Cancri e and 41 light years away might have an atmosphere made up not only of vaporized molten rock but other gases as well, such as carbon dioxide or carbon monoxide.

The exoplanet orbits much too close to its star, only 1.4 million miles away, for any life as we know it to exist. Its surface is thought to be molten, heated by that star.

The team thinks that the gases blanketing 55 Cancri e would be bubbling out from the interior, rather than being present ever since the planet formed. “The primary atmosphere would be long gone because of the high temperature and intense radiation from the star,” said Bello-Arufe. “This would be a secondary atmosphere that is continuously replenished by the magma ocean. Magma is not just crystals and liquid rock; there’s a lot of dissolved gas in it, too.”

As always, these results remain unconfirmed and are very uncertain.

Chang’e-6 enters lunar orbit

Chang'e-6 landing zone

China’s Chang’e-6 sample return spacecraft successfully entered lunar orbit today, in preparation for its mission to land and bring back material from the the far side of the Moon. The landing zone is indicated by the red box on the map to the right, on the southern rim of Apollo Crater in the southern hemisphere. That crater is inside South Aitkin Basin, one the Moon’s largest impact basins.

The spacecraft will next adjust its orbit to prepare for sending its lander-ascender sections down to the surface. If the landing goes well, it will drill into the surface, place some material into the ascender section, which will then lift-off and dock with the orbiter-return section in orbit. The material will be transferred into the return section, which will separate and bring the material back to Earth, sometime in late June.

TESS resumes science operations

Engineers have corrected the issue that put the space telescope TESS into safe mode on April 8, 2024 and have resumed science operations.

The operations team determined this latest safe mode was triggered by a failure to properly unload momentum from the spacecraft’s reaction wheels, a routine activity needed to keep the satellite properly oriented when making observations. The propulsion system, which enables this momentum transfer, had not been successfully repressurized following a prior safe mode event April 8. The team has corrected this, allowing the mission to return to normal science operations. The cause of the April 8 safe mode event remains under investigation.

As for that April 8th safe mode, though engineers were able to return the spacecraft to normal operations after about a week, that they still do not know what caused it remains a concern.

TESS takes high resolution survey images of 93% of the sky about once per month. By comparing the data from each scan, scientists have discovered so far more than 300 transiting exoplanets as well as many supernovae and other phenomenon related to variable stars.

Swirls of layers and dunes at the bottom of Valles Marineris

Overview map

Swirls of layers and dunes
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on February 25, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows a small spot of the floor of Mars’ giant canyon Valles Marineris, the largest such canyon known in the solar system, as indicated by the white dot on the overview map above.

This location is not actually at the very bottom of the canyon, but on a very large mountainous bench extending out about 20 miles from the canyon’s south rim. It seems there is a lot of dust and sand on this bench, producing many miles of swirling dunes. It also appears there are many terraced layers in the region as well, which also swirl in curves going in many different directions. Though it appears that most of the swirls in this picture are from layers in the bedrock, this conclusion is not certain. For example, are the curves on the top of the mesa dunes or bedrock layers? The answer is hardly clear.

For scale, the canyon at this location is about 80 to 90 miles wide. The northern rim rises five miles from the bottom to the top, while the south rises seven miles. And yet, though five to ten times larger than Earth’s Grand Canyon, this is only a small side spur of Valles Marineris.

Scientists: Restrict all exploration on Mars to protect our future work!

In a paper just published, planetary scientists Australia have proposed strict guidelines for any future exploration on Mars in order to prevent future colonists from doing anything that might interfere with any future research the scientists might want to do.

The thrust of the paper, they comment, is to ensure that locales of geological significance on Mars do not suffer the same damage as many sites on Earth have faced. Sites on the Red Planet can be practically conserved while still allowing science and exploration to continue, they say.

“Geoconservation allows humanity to protect Earth’s story and geological history,” the researchers observe, “so that present and future generations can experience Earth’s aesthetic beauty, conduct scientific research, connect with various cultures, adequately protect and ensure the functioning of Earth’s biology and ecosystems, and learn about the history of our planet.”

Let me translate: “We academics fear allowing others the freedom to explore. We come first. Let’s create rules that will allow us to do what we want, while forcing others to ask us for permission to do what they want.”

Sadly, this mentality now rules throughout all of western civilization’s intellectual community, and its not much different than the totalitarian top-down attitudes of the Russians and Chinese. Those in charge or better educated simply know better than everyone else, and are hell bent on telling everyone what they can and cannot do.

The first few generations of colonists on Mars, the Moon, and the asteroids are going to find their hands badly tied. Freedom will not exist.

A supernova factory

A supernova factory

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken by the Hubble Space Telescope in 2023 as part of a survey of galaxies where recent supernovae have occurred. One occurred in 2020 in this galaxy, which is about 240 million light years away and dubbed UGC 9684.

Remarkably, the 2020 supernova in this galaxy isn’t the only one that’s been seen there — four supernova-like events have been spotted in UGC 9684 since 2006, putting it up there with the most active supernova-producing galaxies. It turns out that UGC 9684 is a quite active star-forming galaxy, calculated as producing one solar mass worth of stars every few years! This level of stellar formation makes UGC 9684 a veritable supernova factory, and a galaxy to watch for astronomers hoping to examine these exceptional events.

This image provides scientists a high resolution baseline should another supernova occur. It will not only make it easier to spot a future supernova, it also increases the chances that the progenitor star that went boom could be identified.

Curiosity’s journey in Gediz Vallis approaching its end

Panorama taken on May 1, 2024
Click for original image.

Overview map
Click for interactive map.

Cool image time! The panorama above, cropped, reduced, enhanced, and annotated to post here, was created using 31 pictures taken by Curiosity’s right navigation camera on May 1, 2024. It looks uphill into Gediz Vallis, the slot canyon that the rover has been traversing since August 2022.

The overview map to the right gives the context. The blue dot marks Curiosity’s present position. The red dotted line, on both the panorama and the overview indicate the rover’s planned route, with the white dotted line marking the route it actually traveled. The yellow lines indicate approximate the area covered by the panorama.

Coming into view inside Gediz Vallis is that small outcrop in the center of the canyon that the science team has targeted for inspection for years. It will be the last spot the rover visits in Gediz Vallis before turning west to head uphill in a parallel canyon. To see that route look at the map in this September 2023 post. Curiosity will travel west past two canyons before turning uphill again in the third.

Even then, Curiosity will still be in the low foothills at the base of Mount Sharp. The peak, blocked from view by the mountain’s lower flanks, is still 26 miles away and about 16,000 feet higher up. The journey to get there has really only begun, even after a dozen years exploring Gale Crater.

Scientists observe orangutan use plant to heal a wound

In what might be the most sophisticated medical treatement yet seen by a wild animal, scientists in 2022 observed an orangutan named Rakus treat a face wound with a poultice it made from a plant known by locals to have medicinal value.

Rakus was observed eating the stems and leaves of the creeper akar kuning (Fibraurea tinctoria), which local people use to treat diabetes, dysentery and malaria, among other conditions. Orangutans in the area rarely eat this plant.

In addition to eating the leaves, Rakus chewed them without swallowing and used his fingers to smear the juice on his facial wound over seven minutes. Some flies settled on the wound, whereupon Rakus spread a poultice of leaf-mash on the wound. He ate the plant again the next day. Eight days after his injury, his wound was fully closed.

Other animals have been seen using plants or insects for medicinal reasons, but none had done anything as complicated as Rakus. Nor have researchers of orangetans ever seen another do anything similar in more than two decades of research. It is thus unclear how Rakus knew what to do. Did he figure it out on the spot, or had he seen it done in the past by others when unobserved?

China launches Chang’e-6 sample return mission to the far side of the Moon

Chang'e-6 landing zone

The new colonial movement: China today successfully launched its Chang’e-6 sample return mission to the far side of the Moon, its Long March 5 rocket lifting off from its coastal Wenchang spaceport. Unlike the Long March 5B, whose core stage reaches an unstable orbit and later crashes uncontrolled somewhere on Earth, the core stage of Long March 5 does not, and thus returns to Earth immediately, over the ocean.

The graphic from the right, released by China’s state-run press, shows the landing zone in red on the far side. The target is the southern rim area of Apollo Crater, marked by the uneven white outline. Apollo sits inside the South Aitken Basin, one of the Moon’s largest impact basins, 1,600 miles across, and roughly indicated by the black circle. The circle to the left of Apollo indicates Van Karman crater, where Chang’e-4 landed in 2019 with the Yutu-2 rover, both still operating.

The mission includes a lunar orbiter, a lander, an ascent vehicle, and an Earth sample return capsule. If all goes as planned, the samples will return to Earth in 53 days.

The leaders in the 2024 launch race:

45 SpaceX
18 China
6 Russia
5 Rocket Lab

American private enterprise still leads the world combined in successful launches, 52 to 30. SpaceX by itself still leads the rest of the world, including other American companies, 45 to 37.

Sunspot update: A minor uptick in sunspot activity in April

It is that time of the month again. Yesterday NOAA posted its monthly update of its graph tracking the number of sunspots on the Sun’s Earth-facing hemisphere. As I have done now for every month since I began this website in 2010, I have posted this updated graph below, with several additional details to provide some larger context.

In April the number of sunspots on the Sun went up somewhat, the count rising to the highest level since the count hit its peak of activity last summer. The sunspot number in April, 136.5, was however still significantly less than the 2023 peak of 160. Thus it appears the Sun is likely still the middle saddle of a doubled-peaked relatively weak solar maximum, with the Sun doing what I predicted in February 2024:
» Read more

Another Mars location being considered for future helicopter mission

Global overview of potential Mars helicopter missions

Floor of Degana Crater
Click for original picture.

In today’s May download of new photos from Mars Reconnaissnce Orbiter (MRO) I came across the picture to the right, reduced and sharpened to post here, and taken on April 2, 2024 by MRO’s high resolution camera. The scientists labeled it “Sample Rim Traverse Hazards at Possible Mars Helicopter Landing Site.” It was clearly taken as part of preliminary research to determine some potential landing sites for a future Mars helicopter mission.

Nor is this the first such location or region on Mars targeted for such a mission. As shown in the global map above of Mars, colored by the elevation data from MRO (blue is low and orange is high), two other candidate sites are being looked at as well. About a half dozen pictures have been taken inside the eastern end of Valles Marineris, exploring a helicopter mission there. In addition, MRO took for the same purpose a recent photo of the floor of Terby Crater, on the northern interior slope of Hellas Basin.
» Read more

Shocker! Scientists tried and failed to infect people with COVID who had natural immunity

Modern scientists discover the obvious: In a experiment to see the impact of COVID on people who had previously gotten sick with the virus, scientists have discovered something called “natural immunity,” a phenomenon once known to doctors and ordinary people for centuries but purposely forgotten in 2020 when an election was coming up and the leftists who controlled most universities, health departments, and science organizations wanted a panic to prevent Donald Trump from getting reelected.

Researchers use challenge trials to understand infections and quickly test vaccines and therapies. In March 2021, after months of ethical debate, UK researchers launched the world’s first COVID-19 challenge trial. The study identified a minuscule dose of the SARS-CoV-2 strain that circulated in the early days of the pandemic that could infect about half of the participants, who had not previously been infected with the virus (at that time, vaccines weren’t yet widely available).

In parallel, a team led by Helen McShane, an infectious-disease researcher at Oxford, launched a second SARS-CoV-2 challenge study in people … who had recovered from naturally caught SARS-CoV-2 infections, caused by a range of variants. The trial later enrolled participants who had also been vaccinated.

…When nobody developed a sustained infection, the researchers increased the dose by more and more in subsequent groups of participants, until they reached a level 10,000 times the initial dose. A few volunteers developed short-lived infections, but these quickly vanished.

…“We were quite surprised,” says Susan Jackson, a study clinician at Oxford and co-author of the latest study. “Moving forward, if you want a COVID challenge study, you’re going to have to find a dose that infects people.”

This article in the science journal Nature is written in a very clunky manner, almost as if the writer and editors wanted to obscure these findings.

The bottom line however is no surprise to anyone who kept their heads during the 2020 COVID panic. This virus was not the plague, but merely comparable to a new strain of the flu, though apparently artificially created by a Chinese lab in Wuhan that was partly funded by American federal funds from the NIH. And like all such diseases, once you caught it your own immune system naturally figured out how to protect you from it in the future.

And like the flu, if you were young and healthy it was incapable of killing you. The quicker the general population had gotten infected and immune, the quicker the epidemic would have died out, making it impossible for the virus to harm many of the sick and old. That was the standard response to epidemics until 2020.

Instead, the health establishment went nuts, forgot basic science, and did exactly the opposite, thus killing many more of the old and sick than necessary.

Hubble out of safe mode and resumed science observations

According to the Hubble website, engineers have corrected the gyro issue that put the Hubble Space Telescope into safe mode on April 23, 2024.

On April 30, 2024, NASA announced it restored the agency’s Hubble Space Telescope to science operations April 29. The spacecraft is in good health and once again operating using all three of its gyros. All of Hubble’s instruments are online, and the spacecraft has resumed taking science observations.

No other information was released. The safe mode was initiated by faulty readings from one of those gyros. Was the problem in the gyro itself, or were the readings merely incorrect? This matters because when one of those gyros finally fails, the telescope will go to one-gyro mode, saving its second gyro in reserve. At that point Hubble will no longer be able to take sharp images, though it will still be able to some science.

Lava land on Mars

Lava land on Mars
Click for original image.

Cool image time! The picture to the right, cropped, reduced, and sharpened to post here, was taken on March 2, 2024 by the high resolution camera on Mars Reconnaissance Orbiter (MRO). It shows what the scientists label as “platy fractures.”

The ridges likely align with cracks that developed over time on this lava field, which then formed the ridges when magma oozed up from below. It is also possible that these events were closely linked, that the pressure from the magma below cracked this lava field, with the magma immediately oozing out. Because the pressure was evenly applied across the whole surface, it caused a network of cracks and plates, not a single vent or caldera. The even distribution of the pressure also caused only a small amount of lava to leak out to form the ridges.
» Read more

Webb maps the global temperature and water vapor of a hot exoplanet

The uncertainty of science: Using detailed infrared data from the Webb Space Telescope, scientists have mapped the temperature swings and atmospheric water vapor across the entire global of a tidally locked “hot Jupiter” exoplanet about 284 light years away that orbits its star every 19.5 hours.

The team used Webb’s MIRI (Mid-Infrared Instrument) to measure light from the WASP-43 system every 10 seconds for more than 24 hours. “By observing over an entire orbit, we were able to calculate the temperature of different sides of the planet as they rotate into view,” explained Bell. “From that, we could construct a rough map of temperature across the planet.”

The measurements show that the dayside has an average temperature of nearly 2,300 degrees Fahrenheit (1,250 degrees Celsius) – hot enough to forge iron. Meanwhile, the nightside is significantly cooler at 1,100 degrees Fahrenheit (600 degrees Celsius). The data also helps locate the hottest spot on the planet (the “hotspot”), which is shifted slightly eastward from the point that receives the most stellar radiation, where the star is highest in the planet’s sky. This shift occurs because of supersonic winds, which move heated air eastward.

…To interpret the map, the team used complex 3D atmospheric models like those used to understand weather and climate on Earth. The analysis shows that the nightside is probably covered in a thick, high layer of clouds that prevent some of the infrared light from escaping to space. As a result, the nightside – while very hot – looks dimmer and cooler than it would if there were no clouds.

The data also found water vapor on both the day and night sides of the exoplanet, but surprisingly no evidence of methane, suggesting that atmosphere has high winds exceeding 5,000 miles per hour that mixes that atmosphere globally. Any methane that was expected to exist on the night side gets blown to the day side where the heat destroys it.

This data, while excellent, is also very coase and even more uncertain. While Webb can get good infrared spectroscopy from almost 300 light years away, we must take the interpretations of that data with great skepticism.

Webb takes an infrared look at the mane of the Horsehead Nebula

Context images
Click for original image.

The mane of the Horsehead Nebula, seen in infrared
Click for original image.

The cool infrared image to the right, cropped, reduced, and sharpened to post here, was taken by the Webb Space Telescope and released today. The three pictures above provide the context, with the rectangle inside the rightmost image indicated the area covered by the close-up to the right.

Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of a dense region known as the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1,300 light-years away.

The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material and therefore is harder to erode. Astronomers estimate that the Horsehead has about five million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

In the close-up, note the many distant tiny galaxies, both above the mane as well as glowing throught it.

Martian dunes with frost and a sublimating dry ice mantle

Martian dunes surrounded by frost
Click for original image.

Cool image time! The picture to the right, cropped to post here, was taken on March 16, 2024 by the high resolution camera of Mars Reconnaissance Orbiter (MRO). It was released today as a captioned picture from MRO’s camera team. As noted in the caption, written by the camera’s principal investigator Alfred McEwen:

This image shows a field a sand dunes in the Martian springtime while the seasonal carbon dioxide frost is sublimating into the air. This sublimation process is not at all uniform, instead creating a pattern of dark spots.

In addition, the inter-dune areas are also striking, with bright frost persisting in the troughs of polygons. Our enhanced-color cutout is centered on a brownish-colored inter-dune area.

Each winter the carbon dioxide in the Martian atmosphere falls as snow, mantling the surface in the latitudes above 60 degrees with a clear coat of dry ice. When spring arrives the sunlight passes through the mantle to heat the ground below, which in turn causes the base of the dry ice mantle to sublimate into gas. When the pressure builds enough, the gas breaks through the mantle at its weak points, spewing out and bringing with it dust from below, which stains the mantle with the dark spots.
» Read more

1 9 10 11 12 13 271